Skip to main content
Log in

Impact of soil texture and water availability on the hydraulic control of plant and grape-berry development

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

All components of the soil-plant-atmosphere (s-p-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological interactions between water uptake by roots and water loss by leaves. The scope of the present work was to explore how the main hydraulic components of grapevine influence fruit quality through changes in liquid- and gas-phase hydraulic conductance.

Methods

To reach our objectives, determinations of shoot growth, berry size and sugar content, leaf gas exchange, predawn leaf water potential (as a proxy of soil water potential), midday stem water potential and leaf water potential were performed in conjunction with anatomical measurements of shoot xylem. All measurements were conducted in two different cultivars (Cabernet franc and Merlot) and on three different soil types (clayey, gravelly, and sandy).

Results

Shoot xylem morphometric characteristics and whole-plant hydraulic conductance were influenced by cultivar and soil type. Differences in leaf gas exchange parameters and water potentials were determined by soil type significantly more than by cultivar. Between the two extremes (gravelly soil imposing drought conditions and sandy soil with easily accessible water) the clayey soil expressed an intermediate plant water consumption and highest sugar accumulation in berry.

Conclusions

Hydraulic and non hydraulic limitations to vine/berry interactions supported the conclusion that water availability in the soil overrides differences due to cultivar in determining the productive potential of the vineyard. Non hydraulic stomatal control was expected to be an important component on plants grown on the clayey soil, which experienced a moderate water stress. Possible links between hydraulic traits and berry development and quality are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

101–14 MGt:

Millardet et de Grasset 101–14 rootstock (an hybrid of Vitis riparia × Vitis rupestris)

A:

Assimilation rate

ABA:

Abscisic acid

ci :

Intercellular CO2

C soil:

Clayey soil characterised by moderate water availability

E:

Transpiration rate

gs :

Stomatal conductance

G soil:

Gravelly soil characterised by low water availability

Kh :

Hydraulic conductance

Kh Sfleaf :

Hydraulic conductance of the whole vine plant multiplied for the total canopy area

Riparia Gloire de Montpellier rootstock:

Cultivar of Vitis riparia

Rsoil-leaf Rsoil-stem, Rstem-leaf :

Components of resistance along the s-p-a continuum

SO4:

Selection Oppenheim # 4 rootstock (an hybrid of Vitis riparia × Vitis berlandieri)

S soil:

Sandy soil characterised by unlimited water availability because of the presence of a water table within the reach of the roots

ΨPD :

Predawn leaf water potential

Ψleaf :

Leaf water potential

Ψstem :

Midday stem water potential

References

  • Addington RN, Mitchell RJ, Oren R, Donovan LA (2004) Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris. Tree Physiol 24:561–569

    Article  PubMed  Google Scholar 

  • Alsina MM, Smart DR, Bauerle T, de Herralde F, Biel C, Stockert C, Negron C, Save R (2011) Seasonal changes of whole root system conductance by a drought-tolerant grape root system. J Exp Bot 62:99–109

    Article  PubMed  CAS  Google Scholar 

  • Améglio T, Archer P, Cohen M, Valancogne C, Daudet F-A, Dayau S, Cruiziat P (1999) Significance and limits in the use of predawn leaf water potential for tree irrigation. Plant Soil 207:155–167

    Article  Google Scholar 

  • Angeles G, Bond B, Boyer JS, Brodribb T, Brooks JR, Burns MJ, Cavender-Bares J, Clearwater M, Cochard H, Comstock J, Davis SD, Domec J-C, Donovan L, Ewers F, Gartner B, Hacke U, Hinckley T, Holbrook NM, Jones HG, Kavanagh K, Law B, Lopez-Portillo J, Lovisolo C, Martin T, Martinez-Vilalta J, Mayr S, Meinzer FC, Melcher P, Mencuccini M, Mulkey S, Nardini A, Neufeld HS, Passioura J, Pockman WT, Pratt RB, Rambal S, Richter H, Sack L, Salleo S, Schubert A, Schulte P, Sparks JP, Sperry J, Teskey R, Tyree M (2004) The cohesion-tension theory. Letters New Phytol 163:451–452

    Article  Google Scholar 

  • Beis A, Patakas A (2010) Differences in stomatal responses and root to shoot signalling between two grapevine varieties subjected to drought. Funct Plant Biol 37:139–146

    Article  Google Scholar 

  • Chaves M, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105:661–676

    Article  PubMed  CAS  Google Scholar 

  • Choné X, van Leeuwen C, Dubourdieu D, Gaudillère J-P (2001) Stem water potential is a sensitive indicator for grapevine water status. Ann Bot 87:477–483

    Article  Google Scholar 

  • Chouzouri A, Schultz HR (2005) Hydraulic anatomy, cavitation susceptibility and gas-exchange of several grapevine cultivars of different geographical origin. Acta Horticult 689:325–331

    Google Scholar 

  • Cruiziat P, Cochard H, Améglio T (2002) Hydraulic architecture of trees: main concepts and results. Ann For Sci 59:723–752

    Article  Google Scholar 

  • Damour G, Simonneau T, Cochard H, Urban L (2010) An overview of models of stomatal conductance at the leaf level. Plant Cell Environ 33:1419–1438

    PubMed  Google Scholar 

  • Davies WJ, Tardieu F, Trejo CL (1994) How do chemical signals work in plants that grow in drying soil? Plant Physiol 104:309–314

    PubMed  CAS  Google Scholar 

  • Davies WJ, Wilkinson S, Loveys B (2002) Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol 153:449–460

    Article  CAS  Google Scholar 

  • Dixon HH, Joly J (1894) On the ascent of sap. Philos Trans R Soc Lond Ser B 186:563–576

    Article  Google Scholar 

  • Domec J-C, Johnson D (2012) Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric vs. anisohydric behavior of Vitis vinifera L. cultivars? Tree Physiol 32:245–248

    Article  PubMed  Google Scholar 

  • Domec J-C, Normeets A, King JS, Sun G, McNulty SG, Gavazzi M, Treasure E, Boggs J (2009) Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapor pressure deficit as soil dries in a drained loblolly pine plantation. Plant Cell Environ 32:980–991

    Article  PubMed  Google Scholar 

  • Escalona JM, Flexas J, Medrano H (1999) Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines. Aust J Plant Physiol 26:421–434

    Article  Google Scholar 

  • Hölttä T, Vesala T, Nikinmaa E, Perämäki M, Siivola E, Mencuccini M (2005) Field measurements of ultrasonic acoustic emissions and stem diameter variations. New insight into the relationship between xylem tensions and embolism. Tree Physiol 25:237–243

    Article  PubMed  Google Scholar 

  • Hubbard RM, Bond BJ, Ryan MG (1999) Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees. Tree Physiol 19:165–172

    Article  PubMed  Google Scholar 

  • Hubbard RM, Ryan MG, Stiller V, Sperry JS (2001) Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant Cell Environ 24:113–121

    Article  Google Scholar 

  • Huber B (1928) Weiter quantitative Untersuchungen uber das Wasserleitungssystem der Pflanzen. Jb Wiss Botany 67:877–959

    Google Scholar 

  • Jones HG, Sutherland RA (1991) Stomatal control of xylem embolism. Plant Cell Environ 11:111–121

    Google Scholar 

  • Lovisolo C, Schubert A (1998) Effects of water stress on vessel size and xylem hydraulic conductivity in Vitis vinifera L. J Exp Bot 49:693–700

    CAS  Google Scholar 

  • Lovisolo C, Schubert A, Sorce C (2002a) Are xylem radial development and hydraulic conductivity in downwardly-growing grapevine shoots influenced by perturbed auxin metabolism? New Phytol 156:65–74

    Article  PubMed  CAS  Google Scholar 

  • Lovisolo C, Hartung W, Schubert A (2002b) Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines. Funct Plant Biol 29:1349–1356

    Article  CAS  Google Scholar 

  • Lovisolo C, Perrone I, Hartung W, Schubert A (2008) An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought. New Phytol 180:642–651

    Article  PubMed  CAS  Google Scholar 

  • Lovisolo C, Perrone I, Carra A, Ferrandino A, Flexas J, Medrano H, Schubert A (2010) Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non hydraulic interactions at the whole plant level: a physiological and molecular update. Funct Plant Biol 37:98–116

    Article  CAS  Google Scholar 

  • Mabrouk H, Carbonneau A (1996) Une method simple de determination de la surface foliaire de la vigne (Vitis vinifera L.). Progrès Agricole et Viticole 18:392–398

    Google Scholar 

  • Meinzer FC (2002) Co-ordination of liquid and vapor phase water transport properties in plants. Plant Cell Environ 25:265–274

    Article  PubMed  Google Scholar 

  • Muller B, Pantin F, Génard M, Turc O, Freixes S, Piques M, Gibon Y (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 62:1715–1729

    Article  PubMed  CAS  Google Scholar 

  • Ojeda H, Andary C, Kraeva E, Carbonneau A, Deloire A (2002) Influence of pre- and postvéraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. Am J Enol Vitic 53:261–267

    CAS  Google Scholar 

  • Pellegrino A (2003) Elaboration d’un outil de diagnostic du stress hydrique utilisable sur la vigne en parcelle agricole par couplage d’un modèle de bilan hydrique et d’indicateurs de fonctionnement de la plante. Thesis: Diplôme de Doctorat, ENSA, Montpellier

  • Pellegrino A, Gozé E, Lebon E, Wery J (2006) A model-based diagnosis tool to evaluate the water stress experienced by grapevine in field sites. Eur J Agron 25:49–59

    Article  Google Scholar 

  • Pou A, Flexas J, Alsina MM, Bota J, Carambula C, De Herralde F, Galmés J, Lovisolo C, Jiménez M, Ribas-Carbó M, Rusjan D, Secchi F, Tomàs M, Zsófi Z, Medrano H (2008) Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris). Physiol Plant 134:313–323

  • Rogiers S, Greer DH, Hatfield JM, Hutton RJ, Clarke SJ, Hutchinson PA, Somers A (2011) Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and ABA. Tree Physiol 32:249–261

    Article  PubMed  Google Scholar 

  • SAS Institute Inc (2009) The SAS software, Version 9.2, Cary, NC, 2009

  • Scholander P, Hammel H, Edda D, Bradstreet E, Hemmingsen E (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  PubMed  CAS  Google Scholar 

  • Schultz HR (2003) Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant Cell Environ 26:1393–1405

    Article  Google Scholar 

  • Schultz HR, Matthews MA (1993) Xylem development and hydraulic conductance in sun and shade shoots of grapevine (Vitis vinifera L.): evidence that low light uncouples water transport capacity from leaf area. Planta 190:393–406

    Article  Google Scholar 

  • Schultz HR, Stoll M (2010) Some critical issues in environmental physiology of grapevines: future challenges and current limitations. Aust J Grape Wine Res 16:4–24

    Article  CAS  Google Scholar 

  • Schultz HR, Kiefer W, Gruppe W (1996) Photosynthetic duration, carboxylation efficiency and stomatal limitation of sun and shade leaves of different ages in field-grown grapevine (Vitis vinifera L.). Vitis 35:169–176

    CAS  Google Scholar 

  • Souza CR, Maroco JP, dos Santos TP, Rodrigues ML, Lopes C, Pereira JS, Chaves MM (2005) Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars. Agric Ecosyst Environ 106:261–274

    Article  Google Scholar 

  • Sperry JS, Pockman WT (1993) Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis. Plant Cell Environ 16:279–287

    Article  Google Scholar 

  • Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 21:347–359

    Article  Google Scholar 

  • Stoll M, Loveys B, Dry P (2000) Hormonal changes induced by partial rootzone drying of irrigated grapevine. J Exp Bot 51:1627–1634

    Article  PubMed  CAS  Google Scholar 

  • Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419–432

    Google Scholar 

  • Tesic D, Woolley DJ, Hewett EW, Martin DJ (2001) Environmental effects on cv Cabernet Sauvignon (Vitis vinifera L.) grown in Hawke’s Bay, New Zealand. 2. Development of a site index. Aust J Grape Wine Res 8:27–35

    Article  Google Scholar 

  • Trégoat O, van Leeuwen C, Choné X, Gaudillère J-P (2002) The assessment of vine water and nitrogen uptake by means of physiological indicators. Influence on vine development and berry potential (Vitis vinifera L. cv Merlot, 2000, Bordeaux). J Int des Sciences de la Vigne et du Vin 36:133–142

    Google Scholar 

  • Tyree MT (2003) Hydraulic limits on tree performance: transpiration, carbon gain and growth of trees. Trees Struct Funct 17:95–100

    Google Scholar 

  • Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360

    Article  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • van den Honert TH (1948) Water transport in plants as a catenary process. Discuss Faraday Soc 3:146–153

    Article  Google Scholar 

  • van Leeuwen C, Seguin G (1994) Incidences de l’alimentation en eau de la vigne, appréciée par l’état hydrique du feuillage, sur le développement de l’appareil végétatif et la maturation du raisin (Vitis vinifera variété Cabernet franc, Saint-Emilion, 1990). J Int des Sciences de la Vigne et du Vin 28:81–110

    CAS  Google Scholar 

  • van Leeuwen C, Friant P, Choné X, Trégoat O, Koundouras S, Dubourdieu D (2004) Influence of climate, soil, and cultivar on terroir. Am J Enol Vitic 55:207–217

    Google Scholar 

  • van Leeuwen C, Bois B, Pieri P, Gaudillère JP (2007) Climate as a terroir component. Congress on Climate and Viticulture, Zaragoza, pp 10–14

    Google Scholar 

  • van Leeuwen C, Tregoat O, Choné X, Bois B, Pernet D, Gaudillère JP (2009) Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? J Int des Sciences de la Vigne et du Vin 43:121–134

    Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. In: Timell TE (ed) Springer series in wood science, vol 1. Springer, Berlin

    Google Scholar 

  • Zsófi ZS, Gál L, Szilágyi Z, Szücs E, Marschall M, Nagy Z, Bálo B (2009) Use of stomatal conductance and pre-dawn water potential to classify terroir for the grape variety Kékfrankos. Aust J Grape Wine Res 15:36–47

    Article  Google Scholar 

  • Zufferey V, Cochard H, Améglio T, Spring J-L, Viret O (2011) Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas). J Exp Bot 62:3885–3894

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Claire Moueix and Macarena del Rio for help during field measurements and Mark Irvine and Elzbieta Ceglarska for the invaluable support. We are grateful to château Cheval Blanc for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Tramontini.

Additional information

Responsible Editor: Tibor Kalapos.

The positions and opinions presented in this article are those of the author alone and are not intended to represent the views or scientific works of EFSA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tramontini, S., van Leeuwen, C., Domec, JC. et al. Impact of soil texture and water availability on the hydraulic control of plant and grape-berry development. Plant Soil 368, 215–230 (2013). https://doi.org/10.1007/s11104-012-1507-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1507-x

Keywords

Navigation