Skip to main content
Log in

Improving performance of Cytisus striatus on substrates contaminated with hexachlorocyclohexane (HCH) isomers using bacterial inoculants: developing a phytoremediation strategy

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Microbe-assisted phytoremediation is particularly effective for organic pollutants. The leguminous shrub Cytisus striatus (Hill) Rothm. has been proposed as a candidate species for the rhizoremediation of hexachlorocyclohexane (HCH)-contaminated sites. The aim of this study was to improve the performance of this species using microbial inoculants.

Methods

C. striatus was grown in substrates contaminated with 0, 10 and 35 mg HCH kg−1 for 8 weeks. Plants were either not inoculated (NI), or inoculated with the endophyte Rhodococcus erythropolis ET54b and the HCH-degrader Sphingomonas sp. D4 (isolated from a HCH-contaminated soil) on their own or in combination (ET, D4 and ETD4).

Results

Inoculation with both bacterial strains (ETD4) resulted in decreased HCH phytotoxicity and improved plant growth. HCH-exposed plants inoculated with ETD4 presented a 120–160 % increase in root, and 140–160 % increase in shoot biomass, and led to a decrease in the activities of enzymes involved in anti-oxidative defence. APOD activity was reduced by up to 37 % in shoot tissues and 25 % in root tissues, and corresponding activities of SOD were reduced by up to 35 % and 30 %. HCH dissipation was enhanced in the presence of C. striatus but no significant effect of microbial inoculants was observed.

Conclusions

Inoculating C. striatus with this combination of bacterial strains is a promising approach for the remediation of HCH-contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abhilash PC, Singh N (2010a) Withania somnifera dunal-mediated dissipation of lindane from simulated soil: implications for rhizoremediation of contaminated soil. J Soils Sediments 10:272–282

    Article  CAS  Google Scholar 

  • Abhilash PC, Singh N (2010b) Effect of growing Sesamum indicum L. on enhanced dissipation of lindane (1,2,3,4,5,6-hexachlorocyclohexane) from soil. Int J Phytoremediat 12:440–453

    Article  CAS  Google Scholar 

  • Becerra-Castro C, Kidd PS, Prieto-Fernández Á, Weyens N, Acea MJ, Vangronsveld J (2011) Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: Isolation and characterisation. Plant Soil 340:413–433

    Article  CAS  Google Scholar 

  • Bergmeyer HU, Gawen K, Grassl M (1974) Enzymes as biochemical reagents. In: Bergmeyer HU (ed) Methods in enzymatic analysis. Academic, New York, pp 425–522

    Google Scholar 

  • Breivik K, Pacyna JM, Münch J (1999) Use of α-, β-, and γ-hexachlorocyclohexane in Europe, 1970–1996. Sci Total Environ 239:151–163

    Article  PubMed  CAS  Google Scholar 

  • Calvelo-Pereira R, Camps-Arbestain M, Rodríguez-Garrido B, Macías F, Monterroso C (2006) Behaviour of α-, β-, γ-, and δ-hexachlorocyclohexane in the soil-plant system of a contaminated site. Environ Pollut 144:210–217

    Article  PubMed  CAS  Google Scholar 

  • Calvelo Pereira R, Monterroso C, Macías F, Camps-Arbestain M (2008) Distribution pathways of hexachlorocyclohexane isomers in a soil-plant-air system. A case study with Cynara scolymus L. and Erica sp. plants grown in a contaminated site. Environ Pollut 155:350–358

    Article  PubMed  CAS  Google Scholar 

  • Calvelo Pereira R, Monterroso C, Macías F (2010) Phytotoxicity of hexachlorocyclohexane: effect on germination and early growth of different plant species. Chemosphere 79:326–333

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48

    Article  CAS  Google Scholar 

  • Chekol T, Vough L, Chaney R (2002) Plant-soil-contaminant specificity affects phytoremediation of organic contaminants. Int J Phytoremediat 4:17–26

    Article  CAS  Google Scholar 

  • Chhikara S, Paulose B, White JC, Dhankher OP (2010) Understanding the physiological and molecular mechanism of persistent organic pollutant uptake and detoxification in Cucurbit species (Zucchini and Squash). Environ Sci Technol 44:7295–7301

    Article  PubMed  CAS  Google Scholar 

  • Dettenmaier EM, Doucette WJ, Bugbee B (2009) Chemical hydrophobicity and uptake by plants roots. Environ Sci Technol 43:324–329

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Zhu L (2004) Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55:1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Gerbling KP, Kelly GJ, Fischer KH, Latzko E (1984) Partial purification and properties of soluble ascorbate peroxidases from pea leaves. J Plant Physiol 115:59–67

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  PubMed  CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463

    Article  PubMed  CAS  Google Scholar 

  • Kidd PS, Prieto-Fernandez A, Monterroso C, Acea MJ (2008) Rhizosphere microbial community and hexachlorocyclohexane degradative potential in contrasting plant species. Plant Soil 302:233–247

    Article  CAS  Google Scholar 

  • Kidd PS, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behaviour at the root–soil interface: Implications in phytoremediation. Environ Exp Bot 67:243–259

    Article  CAS  Google Scholar 

  • Kiyohara H, Nagao K, Yana K (1982) Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Appl Environ Microbiol 43:454–457

    PubMed  CAS  Google Scholar 

  • Kuiper I, Kravchenko LV, Bloemberg GV, Lugtenberg BJJ (2002) Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudate components. Mol Plant-Microbe Interact 15:734–741

    Article  PubMed  CAS  Google Scholar 

  • Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler HPE, Holliger C, Jackson C, Oakeshott JG (2010) Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackerbrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Leys NMEJ, Ryngaert A, Bastiaens L, Verstraete W, Top EM, Springael D (2004) Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70:1944–1955

    Article  PubMed  CAS  Google Scholar 

  • Mackay D, Shiu WY, Ma KC (1997) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals, vol 5. Lewis, Chelsea

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, New York

    Google Scholar 

  • McCord J, Fridovich I (1969) Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    PubMed  CAS  Google Scholar 

  • Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643

    PubMed  Google Scholar 

  • Schlegel HG, Daltwasser H, Gottschal G (1961) Ein sumbersverfahren zur kultur wasserstoffoxidierender bacterien: Wachstum physiologische untersuchungen. Arc Microbiol 38:87–98

    Google Scholar 

  • Schwitzguébel JP, Meyer J, Kidd PS (2006) Pesticides removal using plants: phytodegradation versus phytostimulation. In: Mackova M, Dowling DN, Macek T (eds) Phytoremedation rhizoremediation. Springer, Berlin, pp 179–198

    Chapter  Google Scholar 

  • Shaw L, Burns RG (2005) Rhizodeposition and the enhanced mineralization of 2,4-dichlorophenoxyacetic acid in soil from the Trifolium pratense rhizosphere. Environ Microbiol 7:191–202

    Article  PubMed  CAS  Google Scholar 

  • Shone MGT, Wood AV (1974) A comparison of the uptake and tranlocation of some organic herbicides and a systemic fungicide by barley. J Exp Biol 25:390–400

    CAS  Google Scholar 

  • Singh N (2003) Enhanced degradations of hexachlorocyclohexane isomers in rhizosphere soil of Kochia sp. Bull Environ Contam Toxicol 70:75–782

    Google Scholar 

  • UNEP (2009) Report of the Conference of the Parties of the Stockholm Convention on Persistent Organic Pollutants on the work of its fourth meeting. UNEP/POPS/COP.4/38. 8 May 2009. http://chm.pops.int/Programmes/NewPOPs/DecisionsRecommendations/tabid/671/language/en-US/Default.aspx

  • Van Loon LC, Bakker PAHM (2003) Signalling in rhizobacteria–plant interactions. In: de Kroon H, Visser WJW (eds) Root Ecology. Springer, Berlin, pp 297–330

    Google Scholar 

  • Vijgen J, Abhilash PC, Li YF, Lal R, Forter M, Torres J, Singh N, Yunus M, Tian C, Schaffer A, Weber R (2011) Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs—a global perspective on the management of Lindane and its waste isomers. Environ Sci Pollut Res Int 18:152–162

    Article  PubMed  CAS  Google Scholar 

  • Wenzel WW, Adriano DC, Salt DE, Smith RD (1999) Phytoremediation: a plant-microbe-based remediation system. In: Adriano DC, Bollag JM, Frankenberger WT, Sims RC (eds) Bioremediation of Contaminated Soils, vol. 37. American Society of Agronomy Inc., Madison, pp 457–508

    Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009a) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  PubMed  CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009b) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  PubMed  CAS  Google Scholar 

  • Weyens N, Truyens S, Dupae J, Newman L, Taghavi S, van der Lelie D, Carleer R, Vangronsveld J (2010) Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ Pollut 158:2915–2919

    Article  PubMed  CAS  Google Scholar 

  • White JC (2001) Plant-facilitated mobilization and translocation of weathered 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (p, p′-DDE) from an agricultural soil. Environ Toxic Chem 20:2047–2052

    CAS  Google Scholar 

  • White JC (2010) Inheritance of p, p′-DDE phytoextraction ability in hybridized Curcurbita pepo cultivars. Environ Sci Technol 44:5165–5169

    Article  PubMed  CAS  Google Scholar 

  • Willet KL, Ulrich EM, Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–2207

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Xunta de Galicia (INCITE08PXIB200136PR), Consejo Superior de Investigaciones Científicas (CSIC) Proyectos Intramurales (200740I009) and Ministerio de Ciencia e Innovación (CTM2009-14576-CO2-01). Work at UHasselt was supported by the Methusalem project 08M03VGRJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Becerra-Castro.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becerra-Castro, C., Prieto-Fernández, Á., Kidd, P.S. et al. Improving performance of Cytisus striatus on substrates contaminated with hexachlorocyclohexane (HCH) isomers using bacterial inoculants: developing a phytoremediation strategy. Plant Soil 362, 247–260 (2013). https://doi.org/10.1007/s11104-012-1276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1276-6

Keywords

Navigation