Skip to main content

Advertisement

Log in

Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Introduction

In addition to fixing atmospheric nitrogen, some bacterial isolates can also solubilize insoluble phosphates, further contributing to plant growth.

Aims

The objectives of this study were the following: isolate, select, and identify nodulating bacteria in the cowpea that are efficient not only in biological nitrogen fixation (BNF) but also in the solubilization of insoluble inorganic phosphates; identify and quantify the organic acids produced; and establish the relationship between those acids and the solubilizing capacity.

Methods

The bacteria were captured from two soils containing high concentrations of insoluble phosphorus from the cities of Lavras and Patos de Minas, using the cowpea [Vigna unguiculata (L.) Walp.] as bait. We obtained 78 strains, which were characterized according to their cultural attributes in culture medium 79 with the strains UFLA 03-84, INPA 03-11B, and BR3267 (approved by the Ministry of Livestock and Supply Agriculture—MAPA, as inoculants for the cowpea) and Burkholderia cepacia (LMG1222T), which was used as a positive control for phosphate solubilization. Strains that were selected for their efficiency in both processes were identified by 16S rDNA sequence analysis. We evaluated the symbiotic efficiency (BNF) in a greenhouse and the solubilization efficiency of CaHPO4, Al(H2PO4)3, and FePO4.2H2O in solid and liquid GELP media. Strains that excelled at the solubilization of these phosphate sources were also evaluated for the production of the following organic acids: oxalic, citric, gluconic, lactic, succinic, and propionic.

Results

The presence of Acinetobacter, Bacillus, Firmicutes, Microbacterium, Paenibacillus, and Rhizobium was detected by 16S rDNA sequencing and analysis. Bacterial strains obtained from cowpea nodules varied greatly in the efficiency of their BNF and phosphate solubilization processes, especially in the strains UFLA 03-09, UFLA 03-10, UFLA 03-12, and UFLA 03-13, which were more efficient in both processes. More strains were able to solubilize insoluble inorganic calcium and iron phosphates in liquid medium than in solid medium. The production of organic acids was related to the solubilization of CaHPO4 and FePO4.2H2O for some strains, and the type and concentration of the acid influenced this process.

Conclusions

These are the first results obtained with bacterial isolates from tropical soils in which the production of organic acids was detected and quantified to examine the solubilization of insoluble inorganic phosphates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barroso C, Nahas E (2008) Solubilização do fosfato de ferro em meio de cultura. Pesq Agropec Bras 43:529–535

    Article  Google Scholar 

  • Berraquero FR, Baya AM, Cormenzana AR (1976) Establecimiento de indices para el estudio de la solubilización de fosfatos por bacterias del suelo. Ars Pharm 17:399–406

    Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chuang CC, Kuo YL, Chao CC, Chao WL (2007) Solubilization of inorganic phosphate and plant growth promotion by Aspergillus niger. Biol Fertil Soils 43:575–584

    Article  CAS  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • Embrapa (2006) Sistema brasileiro de classificação de solos. Rio de Janeiro

  • Ferreira DF (2008) SISVAR: a program for statistical analysis and teaching. Rev Symp 6:36–41

    Google Scholar 

  • Fred EB, Waksman SA (1928) Laboratory manual of general microbiology. McGraw-Hill Book, New York

    Google Scholar 

  • Gardener BBM (2004) Ecology of Bacillus and Paenibacillus spp. in agriculture systems. Phytophatology 94:1252–1258

    Article  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharyya P, Chakrabartty PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    Article  CAS  Google Scholar 

  • Halverson LJ, Handelsman JO (1991) Enhancement of soybean nodulation by Bacillus cereus UW85 in the field and in a growth chamber. Appl Environ Microbiol 57:2767–2770

    PubMed  CAS  Google Scholar 

  • Hara FAS, Oliveira LA (2004) Características fisiológicas e ecológicas e ecológicas de isolados de rizobio oriundos de solos ácidos e álicos de Presidente Figueiredo, Amazonas. Acta Amaz 34:343–357

    Article  Google Scholar 

  • Hara FAS, Oliveira LA (2005) Características fisiológicas e ecológicas de isolados de rizobio de solos ácidos de Iranduba, Amazonas. Pesq Agropec Bras 40:667–672

    Article  Google Scholar 

  • Hariprasad P, Niranjana SR (2009) Isolation and characterization f phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil 316:13–24

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. California Agriculture Exp. Station, Berkeley

    Google Scholar 

  • Illmer P, Barbato A, Schinner F (1995) Solubilization of hardlysoluble AlPO4 with P-solubilizing microorganisms. Soil Biol Biochem 27:265–270

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere: a critical rewiew. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Kpomblekou-a K, Tabatabai MA (1994) Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci 158:442–453

    Article  CAS  Google Scholar 

  • Lacerda AM, Moreira FMS, Andrade MJB, Soares ALL (2004) Efeito de estirpes de rizóbio sobre a nodulação e produtividade de feijão caupi. Rev Ceres 51:67–82

    Google Scholar 

  • Lane DJ (1991) 16/23SrDNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acidic techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246

    Article  CAS  Google Scholar 

  • Lin TF, Huang H, Shen FT, Young CC (2006) The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174. Bioresour Tecnol 97:957–960

    Article  CAS  Google Scholar 

  • Marra LM, Oliveira SM, Soares CRFS, Moreira FMS (2011) Solubilisation of inorganic phosphates by inoculant strains from tropical legumes. Sci Agric 68:603–609

    CAS  Google Scholar 

  • Moreira FMS (2008) Bactérias fixadoras de nitrogênio que nodulam leguminosas. In: Moreira FMS, Siqueira JO, Brussaard L (eds) Biodiversidade do Solo em Ecossistemas Brasileiros, edn. Ufla, Lavras, pp 621–680

    Google Scholar 

  • Motta PEF, Curi N, Siqueira JO, van Raij B, Furtini Neto AE, Lima JM (2002) Adsorção e formas de fósforo em latossolos: influência da mineralogia e histórico de uso. Rev Bras Ciênc Solo 26:349–359

    CAS  Google Scholar 

  • Murphy J, Riley JPA (1962) Modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Ogut M, Er F, Kandemir N (2010) Phosphate solubilization potentials of soil Acinetobacter strains. Biol Fertil Soils 46:707–715

    Article  CAS  Google Scholar 

  • Ogut M, Er F, Neumann G (2011) Increased proton extrusion of wheat roots by inoculation with phosphorus solubilising microorganims. Plant Soil 339:285–297

    Article  Google Scholar 

  • Peix A, Mateos PF, Rodrigues-Barrueco C, Martinez-Molina E, Velasquez E (2001) Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biol Biochem 33:1927–1935

    Article  CAS  Google Scholar 

  • Qin L, Jiang H, Tian J, Zhao J, Liao H (2011) Rhizobia enhance acquisition of phosphorus from different sources by soybean plants. Plant Soil. doi:10.1007/s11104-011-0947-z

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Sarruge JR, Haag HP (1979) Análises químicas em plantas. Esalq/USP, Piracicaba

    Google Scholar 

  • Scervino JM, Mesa MP, Mónica ID, Recchi M, Moreno NS, Godeas A (2010) Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fertil Soils 46:755–763

    Article  CAS  Google Scholar 

  • Silva VN, Souza LE, Silva F, Martínez CR, Seldin L, Burity HA, Figueiredo MVB (2007) Estirpes de Paenibacillus promotoras de nodulação específica na simbiose Bradyrhizobium-caupi. Acta Sci Agron 29:331–338

    Google Scholar 

  • Soares ALL, Pereira JPAR, Ferreira PAA, Vale HMM, Lima AS, Andrade MJB, Moreira FMS (2006) Agronomic efficiency of selected rhizobia strains and diversity of native nodulating populations in Perdões (MG-BRAZIL): I, Cowpea. Rev Bras Ciên Solo 30:795–802

    CAS  Google Scholar 

  • Song OR, Lee SJ, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz J Microbiol 39:151–156

    Article  Google Scholar 

  • Sperber JI (1958) Solution of apatite by soil microorganisms producing organic acids. Aust J Agric Res 9:782–787

    Article  CAS  Google Scholar 

  • Sylvester-Bradley R, Asakawa N, Torraca SLA, Magalhães FMM, Oliveira LA, Pereira RM (1982) Levantamento quantitativo de microrganismos solubilizadores de fosfatos na rizosfera de gramíneas e leguminosas forrageiras na Amazônia. Acta Amaz 12:15–22

    Google Scholar 

  • Tan KH (1993) Principles of soil chemistry. Springer, New York

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Vincent JMA (1970) Manual for the pratical study of root-nodule bactéria. Blackwell, Oxford

    Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plant inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Yi Y, Huang W, Ge H (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    Article  CAS  Google Scholar 

  • Zilli JE, Xavier GR, Moreira FMS, Freitas ACR, Oliveira LA (2009) Fixação biológica de nitrogênio. In: Zilli JE, Vilarinho AA, Alves JMA (eds) A cultura do feijão caupi na Amazônia brasileira, pp 185–221

Download references

Acknowledgements

To Fundação de Amparo e Pesquisa de Minas Gerais (Fapemig) and CNPq, for granting a PhD Scholarship to L. Marciano Marra, B. Lima Soares and P.A. Avelar Ferreira; to Capes, for granting a PhD Scholarship to S.M. de Oliveira, and for granting a post-doc scholarship (PNPD) to C.R. Fonsêca Sousa Soares; to CNPq, for granting a productivity fellowship to J.M. de Lima and F.M. de Souza Moreira. To CNPq/MAPA project process 578635/2008-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Maria de Souza Moreira.

Additional information

Responsible Editor: Bernard Glick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marciano Marra, L., Fonsêca Sousa Soares, C.R., de Oliveira, S.M. et al. Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant Soil 357, 289–307 (2012). https://doi.org/10.1007/s11104-012-1157-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1157-z

Keywords

Navigation