Skip to main content
Log in

Time change of aluminium toxicity in the acid bulk soil and the rhizosphere in Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) stands

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Context

In acidic forest soils, aluminium can alter tree health due to its potential toxicity. Aluminium phytotoxicity is mainly influenced by its chemical form and its availability.

Methods

As physical-chemical indicators of Al toxicity in soil, Al speciation in soil solutions and in the exchange complex was measured in the rhizosphere and the bulk soil of two tree species (Norway spruce (Picea abies (L.) Karst.) and European Beech (Fagus sylvatica L.) in an acidic soil and in 4 months (November, February, May and August) representing the four seasons in a year.

Results

In the bulk soil, Al toxicity was generally higher under Norway spruce than under beech. Furthermore, temporal changes in Al behaviour were identified under Norway spruce but not under beech. The monomeric Al in the soil solutions and the exchangeable Al in the solid soil increased significantly in February under Norway spruce and were positively correlated with nitrate concentration, suggesting that nitrate influence Al speciation and mobility under Norway spruce. In the rhizosphere, Al toxicity was restricted through Al complexation by organic compounds and by nutrient contents independently from the season. The ecological importance of the rhizosphere in Al detoxification is discussed.

Conclusions

This study suggests that plant specific differences as well as seasonal changes in plant physiology, microbial activity and microclimatology influence aluminum toxicity in acid forest soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez E, Fernandez-Marcos ML, Monterroso C, Fernandez-Sanjurjo MJ (2005) Application of aluminium toxicity indices to soils under various forest species. For Ecol Manage 211:227–239

    Article  Google Scholar 

  • Alvarez E, Fernandez-Sanjurjo M, Otero XL, Macias F (2011) Aluminum speciation in the bulk and rhizospheric soil solution of the species colonizing an abandoned copper mine in Galicia (NW Spain). J Soil Sediment 11:221–230

    Article  CAS  Google Scholar 

  • Augusto L, Bonnaud P, Ranger J (1998) Impact of tree species on forest soil acidification. For Ecol Manage 105:67–78

    Article  Google Scholar 

  • Bakker MR, Dieffenbach A, Ranger J (1999) Soil solution chemistry in the rhizosphere of roots of sessile oak (Quercus petraea) as influenced by lime. Plant Soil 209:209–216

    Article  CAS  Google Scholar 

  • Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Article  Google Scholar 

  • Blaser P, Walthert L, Pannatier G (2008) The sensitivity of Swiss forest soils to acidification and the risk of aluminum toxicity. J Plant Nutr Soil Sci 171:605–612

    Article  CAS  Google Scholar 

  • Boerner REJ, Brinkman JA, Smith A (2005) Seasonal variations in enzyme activity and organic carbon in soil of a burned and unburned hardwood forest. Soil Biol Biochem 37:1419–1426

    Article  CAS  Google Scholar 

  • Boudot JP, Becquer T, Merlet D, Rouiller J (1994) Aluminium toxicity in declining forests -a general overview with a seasonal assessment in a silver forest in the Vosges Mountains (France). Ann Sci Forest 51:27–51

    Article  Google Scholar 

  • Boudot JP, Maitat O, Merlet D, Rouiller J (2000) Soil solutions and surface water analysis in two contrasted watersheds impacted by acid deposition, Vosges mountains, NE France: interpretation in terms of Al impact and nutrient imbalance. Chemosphere 41:1419–1429

    Article  PubMed  CAS  Google Scholar 

  • Calvaruso C, N’Dira V, Turpault MP (2011) Impact of common European tree species and Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) on the physicochemical properties of the rhizosphere. Plant Soil 342:469–480

    Article  CAS  Google Scholar 

  • Collignon C, Calvaruso C, Turpault C (2011) Temporal dynamics of exchangeable K, Ca and Mg in acidic bulk soil and rhizosphere under Norway spruce (Picea abies Karst.) and beech (Fagus sylvatica L.) stands. Plant Soil 349:355–366

    Article  CAS  Google Scholar 

  • Cornelis JT, Titeux H, Ranger J, Delvaux B (2011) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil 342:369–378

    Article  CAS  Google Scholar 

  • Cuenca G, Herrera R, Medina E (1990) Aluminium tolerance in trees of a tropical cloud forest. Plant Soil 125:169–175

    Article  CAS  Google Scholar 

  • Dahlgren RA, Vogt KA, Ugolini FC (1991) The influence of soil chemistry on fine root aluminum concentrations and root dynamics in a subalpine Spodosol, Washington State, USA. Plant Soil 133:117–129

    Article  CAS  Google Scholar 

  • Dieffenbach A, Matzner E (2000) In situ soil solution chemistry in the rhizosphere of mature Norway spruce (Picea abies [L.] Karst.) trees. Plant Soil 222:149–161

    Article  CAS  Google Scholar 

  • Drabek O, Boruvka L, Mladkova L, Kocarek M (2003) Possible method of aluminium speciation in forest soils. J Inorg Bio 97:8–15

    Article  CAS  Google Scholar 

  • Drabek O, Mladkova L, Boruvka L, Szakova J, Nikodem A, Nemecek K (2005) Comparison of water-soluble and exchangeable forms of Al in acid forest soils. J Inorg Bio 99:1788–1795

    Article  CAS  Google Scholar 

  • Duffield JR, Edwards K, Evans DA, Morrish DM, Vobe RA, Williams DR (1991) Low molecular mass aluminum complex speciation in biofluids. J Coord Chem 23:277–290

    Article  CAS  Google Scholar 

  • Eldhuset TD, Swensen B, Wickstrom T, Wollebaek G (2007) Organic acids in root exudates from Picea abies seedlings influenced by mycorrhiza and aluminum. J Plant Nutr Soil Sci 170:645–648

    Article  CAS  Google Scholar 

  • Espiau P, Peyronel A (1976) Exchange acidity in soil. Determination of exchangeable aluminium and exchangeable protons. Science du Sol 161–175

  • Phillips RP, Yanai RD (2004) The effect of AlCl3 additions on rhizosphere soil and fine root chemistry of sugar maple (Acer saccharum). Water Air Soil Poll 54:339–356

    Article  Google Scholar 

  • Göttlein A, Heim A, Matzner E (1999) Mobilization of aluminium in the rhizosphere soil solution of growing tree roots in an acidic soil. Plant Soil 211:41–49

    Article  Google Scholar 

  • Grauer UE (1993) Modelling anion amelioration of aluminium phytotoxicity. Plant Soil 157:319–331

    Article  CAS  Google Scholar 

  • Haynes RJ, Mokolobate MS (2001) Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutr Cycl Agroecosys 59:47–63

    Article  CAS  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Högberg P, Jensen P (1994) Aluminium and uptake of base cations by tree roots—a critique of the model proposed by Sverdrup et al. Water Air Soil Pollut 75:121–125

    Article  Google Scholar 

  • Jentschke G, Goldbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Kaiser K, Guggenberger G, Haumaier L, Zech W (2002) The composition of dissolved organic matter in forest soil solutions: changes induced by seasons and passage through the mineral soil. Org Geochem 33:307–318

    Article  CAS  Google Scholar 

  • Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, Rasche F, Zechmeister-Boltenstern S, Sessitsch A, Richter A (2010) Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol 187:843–858

    Article  PubMed  CAS  Google Scholar 

  • Klugh-Stewart K, Cumming JR (2009) Organic acid exudation by mycorrhizal Andropogon virginicus L. (broomsedge) roots in response to aluminum. Soil Biol Biochem 41:367–373

    Article  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminium toxicity and resistande in plants. Annu Rev Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Lawrence GB, David MB (1997) Response of aluminum solubility to elevated nitrification in soil of a red spruce stand in eastern Maine. Environ Sci Tech 31:825–830

    Article  CAS  Google Scholar 

  • Lundstrom US, van Breemen N, Bain D (2000) The podzolization process. A review. Geoderma 94:91–107

    Article  CAS  Google Scholar 

  • Ma JF, Furukawa J (2003) Recent progress in the research of external Al detoxification in higher plants: a minireview. J Inorg Biochem 97:46–51

    Article  PubMed  CAS  Google Scholar 

  • Maitat O, Boudot JP, Merlet D, Rouiller J (2000) Aluminium chemistry in two contrasted acid forest soils and headwater streams impacted by acid deposition, Vosges Mountains, NE France. Water Air Soil Pollut 117:217–243

    Article  CAS  Google Scholar 

  • Mareschal L (2008) Effet des substitutions d’essences forestières sur l’évolution des sols et de leur minéralogie. Dissertation, Université Henri Poincarré Nancy (Lorraine, France)

  • Mareschal L, Bonnaud P, Turpault MP, Ranger J (2010) Impact of common European tree species on the chemical and physicochemical properties of fine earth: an unusual pattern. Eur J Soil Sci 61:14–23

    Article  CAS  Google Scholar 

  • Marschner H (1991) Mechanisms of adaptation of plants acid soils. Plant Soil 134:1–20

    CAS  Google Scholar 

  • Nielsen KE, Ladekarl UL, Nornberg P (1999) Dynamic soil processes on heathland due to changes in vegetation to oak and Sitka spruce. For Ecol Manage 114:107–116

    Article  Google Scholar 

  • Nordström DK, May HM (1989) Aqueous equilibrium data for mononuclear aluminum species. In: Sposito G (ed) The environmental chemistry of aluminum. CRC Press, Boca Raton, Florida, Chapter 2 29 55

  • Nordström DK, Plummer LN, Langmuir D, Busenberg E, May HM, Jones BF, Parkhurst DL (1990) Revised chemical equilibrium data for major water–mineral reactions and their limitations. In: Melchior DC, Basset RL (eds) Chemical modeling of aqueous systems II, ACS Ser. 416. American Chemical Society, Washington, DC, pp 398–413

    Chapter  Google Scholar 

  • Pokrovskii VA, Helgeson HC (1994) Calculation of the effect of KAl(OH)4° formation on the solubility of corundum at high pressures and temperatures. Mineral Mag 58A:736–737

    Article  Google Scholar 

  • Ranger J, Andreux F (2004) Effet des substitutions d’essence sur le fonctionnement organo-minéral de l’écosystème forestier, sur les communautés microbiennes et sur la diversité des communautés fongiques mycorhiziennes et saprophytes (cas du dispositif experimental de Breuil—Morvan). Rapport final du contrat INRA-GIP Ecofor 2001-24, n°INRA 1502A Nancy: INRA-Champenoux,Biogéochimie des écosystèmes forestiers, pp 1–202

  • Ranger J, Marques R, Jussy JH (2001) Forest soil dynamics during stand development assessed by lysimeter and centrifuge solutions. For Ecol Manage 144:129–145

    Article  Google Scholar 

  • Reuss JO (1983) Implications of the calcium-aluminium exchange system for the effect of acid precipitation on soils. J Environ Qual 12:591–595

    Article  CAS  Google Scholar 

  • Reuss JO, Johnson DW (1985) Effect of soil processes on the acidification of water by acid deposition. J Environ Qual 14:26–31

    Article  CAS  Google Scholar 

  • Rouiller J, Guillet B, Bruckert S (1980) Cations acides échangeables et acidité de surface. Approche analytique et incidence pédogénétiques. Bulltin de l’association Française d’Etude des sols 2:171–175

    Google Scholar 

  • Ross DS, Matschonat G, Skyllberg U (2008) Cation exchange in forest soils: the need for a new perspective. Eur J Soil Sci 59:1141–1159

    Article  CAS  Google Scholar 

  • Schaberg PG, Dehayes DH, Hawley GJ, Strimbeck GR, Cumming JR, Murakami PF, Borer CH (2000) Acid mist and soil Ca and Al alter the mineral nutrition and physiology of red spruce. Tree Physiol 20:73–85

    Article  PubMed  CAS  Google Scholar 

  • Schaedle M, Thornton FC, Raynal DJ, Tepper HB (1989) Response of tree seedlings to aluminum. Tree Physiol 5:337–356

    PubMed  CAS  Google Scholar 

  • Seddoh FK (1973) Altération des roches cristallines du Morvan (granite, granophyres, rhyolites). Etude minéralogique, géochimique et micromorphologique. Dissertation. Université de Dijon (Bourgogne, France)

  • Tagirov B, Schott J (2001) Aluminum speciation in crustal fluids revisited. Geochim Cosmochim Acta 65(21):3965–3992

    Article  CAS  Google Scholar 

  • Tagirov B, Schott J, Harrichoury JC (2002) Experimental study of aluminum-fluoride complexation in near-neutral and alkaline solutions to 300°C. Chem Geol 184:301–310

    Article  CAS  Google Scholar 

  • Tejnecký V, Drábek O, Borůvka L, Nikodem A, Kopáč J, Vokurková P, Šebek O (2010) Seasonal variation of water extractable aluminium forms in acidified forest organic soils under different vegetation cover. Biochem 101:151–163

    Google Scholar 

  • Tipping E (1998) Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat Geochem 4:3–48

    Article  CAS  Google Scholar 

  • Turpault MP, Uterano C, Boudot JP, Ranger J (2005) Influence of mature Douglas fir roots on the solid soil phase of the rhizosphere and its solution chemistry. Plant Soil 275:327–336

    Article  CAS  Google Scholar 

  • Turpault MP, Gobran GR, Bonnaud P (2007) Temporal variations of rhizosphere and bulk soil chemistry in a Douglas fir stand. Geoderma 137:490–496

    Article  CAS  Google Scholar 

  • Umemura T, Usami Y, Aizawa S, Tsunoda K, Satake K (2003) Seasonal change in the level and the chemical forms of aluminum in soil solution under a Japanese cedar forest. Sci Total Environ 317:149–157

    Article  PubMed  CAS  Google Scholar 

  • USDA (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, 2nd edn. U.S. Gov Print Office, Washington, DC, Agriculture Handbook Number 436

    Google Scholar 

  • Van Hees PAW, Tipping E, Lundström US (2001) Aluminium speciation in forest soil solution—modelling the contribution of low molecular weight organic acids. Sci Total Environ 278:215–229

    Article  PubMed  Google Scholar 

  • Van Praag HJ, Weissen F, Dreze P, Cogneau M (1997) Effects of aluminium on calcium and magnesium uptake and translocation by root segments of whole seedlings of Norway spruce (Picea abies Karst). Plant Soil 189:267–273

    Article  Google Scholar 

  • Wonisch H, Gerard F, Dietzel M, Jaffrain J, Nestroy O, Boudot JP (2008) Occurrence of polymerized silicic acid and aluminum species in two forest soil solutions with different acidity. Geoderma 144:435–445

    Article  CAS  Google Scholar 

  • Xiao C, Wesolowski DJ, Palmer DA (2002) Formation quotients of aluminium sulfate complexes in NaCF3SO3 media at 10, 25, and 50°C from potentiometric titrations using a mercury/mercurous sulfate electrode concentration cell. Environ Sci Technol 36:166–173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr C. Calvaruso for critical review of the manuscript, Drs. J. Ranger, A. Legout, S. Uroz and P. Frey-Klett for helpful discussions and B. Simon, C. Clément, P. Bonnaud, D. Gelhaye, S. Didier, C. Bach and P. Vion for technical help. This work was supported by the Lorraine Region and the ONF (Office national des forêts). We thank météo france for communication of climate data. The Breuil-Chenue site belongs to the ORE network (long term observation of forest ecosystems) and received funds from the GIP ECOFOR for monitoring.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-P. Turpault.

Additional information

Responsible Editor: Jian Feng Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collignon, C., Boudot, JP. & Turpault, MP. Time change of aluminium toxicity in the acid bulk soil and the rhizosphere in Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) stands. Plant Soil 357, 259–274 (2012). https://doi.org/10.1007/s11104-012-1154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1154-2

Keywords

Navigation