Skip to main content

Advertisement

Log in

Elevated CO2 affects plant responses to variation in boron availability

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aim

Effects of elevated CO2 on N relations are well studied, but effects on other nutrients, especially micronutrients, are not. We investigated effects of elevated CO2 on response to variation in boron (B) availability in three unrelated species: seed geranium (Pelargonium x hortorum), barley (Hordeum vulgare), and water fern (Azolla caroliniana).

Methods

Plants were grown at two levels of CO2 (370, 700 ppm) and low, medium, and high B. Treatment effects were measured on biomass, net photosynthesis (Pn) and related variables, tissue nutrient concentrations, and B transporter protein BOR1.

Results

In geranium, there were interactive effects (P < 0.05) of B and CO2 on leaf, stem, and total plant mass, root:shoot ratio, leaf [B], B uptake rate, root [Zn], and Pn. Elevated CO2 stimulated growth at 45 μM B, but decreased it at 450 μM B and did not affect it at 4.5 μM B. Pn was stimulated by elevated CO2 only at 45 μM B and chlorophyll was enhanced only at 450 μM B. Soluble sugars increased with high CO2 only at 4.5 and 45 μM B. High CO2 decreased leaf [B] and B uptake rate, especially at 450 μM B. Though CO2 and B individually affected the concentration of several other nutrients, B x CO2 interactions were evident only for Zn in roots, wherein [Zn] decreased under elevated CO2. Interactive effects of B and CO2 on growth were confirmed in (1) barley grown at 0, 30, or 1,000 μM B, wherein growth at high CO2 was stimulated more at 30 μM B, and (2) Azolla grown at 0, 10, and 1,000 μM B, wherein growth at high CO2 was stimulated at 0 and 10 μM B.

Conclusion

Thus, low and high B both may limit growth stimulation under elevated vs. current [CO2], and B deficiency and toxicity, already common, may increase in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ Expt Bot 32:85–100

    Article  CAS  Google Scholar 

  • Blank RR, Derner JD (2004) Effects of CO2 enrichment on plant-soil relationships of Lepidium latifolium. Plant Soil 262:159–167

    Article  CAS  Google Scholar 

  • Blevins DG, Lukaszewski KM (1998) Boron in plant structure and function. Annu Rev Plant Physiol Plant Mol Biol 49:481–500

    Article  PubMed  CAS  Google Scholar 

  • Bolaños L, Lukaszewski K, Bonilla I, Blevins D (2004) Why boron? Plant Physiol Biochem 42:907–912

    Article  PubMed  Google Scholar 

  • Boote KJ (1976) Root-shoot relationships. Soil Crop Sci Soc Florida 36:15–23

    CAS  Google Scholar 

  • Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H, Pfeffer H, Dannel F, Römheld V (2002) Boron in plant biology. Plant Biol 4:205–223

    Article  CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250

    Article  CAS  Google Scholar 

  • Campbell CD, Sage RF (2002) Interactions between atmospheric CO2 concentration and phosphorus nutrition on the formation of proteoid roots in white lupin. Plant Cell Environ 25:1051–1059

    Article  Google Scholar 

  • Coleman JS, McConnaughay KDM, Bazzaz FA (1993) Elevated CO2 and plant nitrogen-use: is reduced tissue nitrogen concentration size-dependent? Oecologia 93:195–200

    Article  Google Scholar 

  • Conroy JP (1992) Influence of elevated atmospheric CO2 concentrations on plant nutrition. Aust J Bot 40:445–456

    CAS  Google Scholar 

  • Cure JD, Acock B (1986) Crop responses to carbon dioxide doubling: a literature survey. Agric For Meteorol 38:127–145

    Article  Google Scholar 

  • Cure JD, Rufty TW, Israel DW (1988) Phosphorus stress effects on growth and seed yield of nonnodulated soybean exposed to elevated carbon dioxide. Agron J 80:897–902

    Article  CAS  Google Scholar 

  • Deng Y (2009) Biomarkers for the monitoring of boron deficiency in Arabidopsis and Pelargonium. Thesis, University of Toledo

  • Dordas C, Brown PH (2000) Permeability of boric acid across lipid bilayers and factors affecting it. J Membr Biol 175:95–105

    Article  PubMed  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Ehleringer JR, Cerling TE, Dearing MD (2002) Atmospheric CO2 as a global change driver influencing plant-animal interactions. Integr Compart Biol 42:424–430

    Article  Google Scholar 

  • Ellsworth D, Reich PB, Naumburg ES, Koch GW, Kubiske ME, Smith SD (2004) Photosynthesis, carboxylation, and leaf nitrogen responses of 16 species to elevated CO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob Chang Biol 10:2121–2138

    Article  Google Scholar 

  • El-Shintinawy F (1999) Structural and functional damage caused by boron deficiency in sunflower leaves. Photosynth 36:565–573

    Article  CAS  Google Scholar 

  • Fangmeier A, Grüters U, Hertstein U, Sandhage-Hofmann A, Vermehren B, Jäger H-J (1996) Effects of elevated CO2, nitrogen supply and tropospheric ozone on spring wheat. I Growthand yield Environ Pollut 91:381–390

    CAS  Google Scholar 

  • Fangmeier A, Gruters U, Hogy P, Vermehren B, Jäger H-J (1997) Effects of elevated CO2, nitrogen supply, and tropospheric ozone on spring wheat-II. Nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Zn). Environ Pollut 96:43–59

    Article  PubMed  CAS  Google Scholar 

  • Gebauer RLE, Reynolds JF, Strain BR (1996) Allometric relations and growth in Pinus taeda: the effect of elevated CO2 and changing N availability. New Phytol 134:85–93

    Article  Google Scholar 

  • Geiger M, Haake V, Ludewig F, Sonnewald U, Stitt M (1999) The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism and nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant Cell Environ 22:1177–1199

    Article  Google Scholar 

  • Ghosh S, Gepstein S, Heikkila JJ, Dumbroff EB (1988) Use of a scanning densitometer or an ELISA reader for measurement of nanogram amount of protein in crude extracts from biological tissue. Anal Biochem 169:227–233

    Article  PubMed  CAS  Google Scholar 

  • Goldbach HE (1997) A critical review on current hypothesis concerning the role of boron in higher plants: suggestions for further research and methodological requirements. J Trace Microprobe Tech 15:51–91

    CAS  Google Scholar 

  • Gutschick VP (1993) Nutrients-limited growth rates: Roles of nutrient-use efficiency and of adaptation to increase nutrient uptake. J Exp Bot 44:41–51

    Article  Google Scholar 

  • Hagedorn F, Landolt W, Tarjan D, Egli P, Bucher JB (2002) Elevated CO2 influences nutrient availability in young beech-spruce communities on two soil types. Oecologia 132:109–117

    Article  Google Scholar 

  • Jin CW, Du ST, Chen WW, Li GX, Zhang YS, Zheng SJ (2009) Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced response under iron limited conditions in tomato. Plant Physiol 150:272–280

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Matoh T, Azuma J (1996) Two chains of rhamnogalacturonan-II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol 110:1017–1020

    PubMed  CAS  Google Scholar 

  • Kouchi H (1977) Rapid cessation of mitosis and elongation of root tip cells of Vicia faba by boron deficiency. Soil Sci Plant Nutr 23:113–118

    Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, San Diego

    Google Scholar 

  • Liu L, King JS, Giarddina CP (2007) Effects of elevated atmospheric CO2 and tropospheric O3 on nutrient dynamics: decomposition of leaf litter in trembling aspen and paper brich communities. Plant Soil 299:65–82

    Article  CAS  Google Scholar 

  • Lloyd J, Farquhar GD (1996) The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. I. General principles and forest ecosystems. Funct Ecol 10:4–32

    Article  Google Scholar 

  • Luomala E-M, Laitinen K, Sutinen S, Kellomäki S, Vapaavuori E (2005) Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature. Plant Cell Environ 28:733–749

    Article  CAS  Google Scholar 

  • Manderscheid R, Bender J, Jäger H-J, Weigel HJ (1995) Effects of season long CO2 enrichment on cereals: II. Nutrient concentrations and grain quality. Agric Ecosyst Environ 54:175–185

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Matoh T (1997) Boron in plant cell walls. Plant Soil 193:59–70

    Article  CAS  Google Scholar 

  • McKee IF, Woodward FI (1994) CO2 enrichment responses of wheat: interactions with temperature, nitrate and phosphate. New Phytol 127:447–453

    Article  Google Scholar 

  • Mishra S, Hecakathorn S, Barua D, Wang D, Joshi P, Hamilton EW, Frantz J (2008) Interactive effects of elevated CO2 and ozone on leaf thermotolerance in field-grown Glycine max. J Integ Plant Biol 50:1396–1405

    Article  CAS  Google Scholar 

  • Mishra S, Hecakathorn S, Frantz J, Futong Y, Gray J (2009) Effects of boron deficiency on geranium grown under different nonphotoinhibitory light levels. J Am Soc Hortic Sci 134:183–193

    Google Scholar 

  • Miwa K, Kamiya T, Fujiwara T (2009) Homeostasis of the structurally important micronutrients, B and Si. Curr Opin Plant Biol 12:307–311

    Article  PubMed  CAS  Google Scholar 

  • Nelson MR (1988) Index to EPA methods. EPA Circ. 901/3-88-01. U.S. Environmental Protection Agency, Washington, DC

  • Norby RJ, O’Neill EG, Luxmoore RJ (1986) Effects of atmospheric CO2enrichment on the growth and mineral nutrition of Quercus alba seedlings in nutrient-poor soil. Plant Physiol 82:83–89

    Article  PubMed  CAS  Google Scholar 

  • O’Neill EG, Luxmoore RJ, Norby RJ (1987) Elevated atmospheric CO2effects on seedling growth nutrient uptake and rhizosphere bacterial populations of Liriodendron tulipifera L. Plant Soil 104:3–11

    Article  Google Scholar 

  • Pal M, Karthikeyapandian V, Jain V, Srivastava AC, Raj A, Sengupta UK (2004) Biomass production and nutritional levels of berseem (Trifolium alexandrium) grown under elevated CO2. Agric Ecosyst Environ 101:31–38

    Article  Google Scholar 

  • Peñuelas J, Idso SB, Ribas A, Kimball BA (1997) Effects of long-term atmospheric CO2 enrichment on the mineral concentration of Citrus aurantium leaves. New Phytol 135:439–444

    Article  Google Scholar 

  • Peñuelas J, Filella I, Tognetti R (2001) Leaf mineral concentrations of Erica arborea, Juniperus communis and Myrtus communis growing in the proximity of natural CO2 spring. Glob Chang Biol 7:291–301

    Article  Google Scholar 

  • Pettersson R, McDonald AJS, Stadenberg I (1993) Response of small birch plants (Betula pendula Roth.) to elevated CO2 and nitrogen supply. Plant Cell Environ 16:1115–1121

    Article  CAS  Google Scholar 

  • Power PP, Woods WG (1997) The chemistry of boron and its speciation in plants. Plant Soil 193:1–13

    Article  CAS  Google Scholar 

  • Prior SA, Rogers HH, Runion GB, Mauney JR (1994) Effects of free-air CO2 enrichment on cotton root growth. Agric For Meteorol 70:69–86

    Article  Google Scholar 

  • Prior SA, Torbert HA, Runion GB, Mullins GL, Rogers HH, Mauney JR (1998) Effects of CO2 enrichment on cotton nutrient dynamics. J Plant Nutr 21:1407–1426

    Article  CAS  Google Scholar 

  • Reid RJ, Hayes JE, Post A, Stangoulis JCR, Graham RD (2004) A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ 25:1405–1414

    Article  Google Scholar 

  • Roberntz P, Stockfors J (1998) Effects of elevated CO2 concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees. Tree Physiol 18:233–241

    PubMed  Google Scholar 

  • Rogers HH, Peterson CM, McCrimmon JN, Cure JD (1992) Response of plant roots to elevated atmospheric carbon dioxide. Plant Cell Environ 15:749–752

    Article  CAS  Google Scholar 

  • Rogers GS, Payne L, Milham P, Conroy J (1993) Nitrogen and phosphorus requirements of cotton and wheat under changing atmospheric CO2 concentrations. Plant Soil 155(156):231–234

    Article  Google Scholar 

  • Rogers GS, Milham PJ, Gillings M, Conroy JP (1996) Sink strength may be the key to growth and nitrogen responses in N-deficient wheat at elevated CO2. Aust J Plant Physiol 23:253–264

    Article  CAS  Google Scholar 

  • Shorrocks VM (1997) The occurrence and correction of boron deficiency. Plant Soil 193:121–148

    Article  CAS  Google Scholar 

  • Sicher RC Jr (2005) Interactive effects of inorganic phosphate nutrition and carbon dioxide enrichment on assimilate partitioning in barley roots. Physiol Plant 123:219–226

    Article  CAS  Google Scholar 

  • Sicher RC, Bunce JA (1999) Photosynthetic enhancement and conductance to water vapor of field-grown Solanum tuberosum (L.) in response to CO2 enrichment. Photosyn Res 62:155–163

    Article  CAS  Google Scholar 

  • Silvola J, Ahlholm U (1995) Combined effects of CO2concentration and nutrient status on the biomass production and nutrient uptake of birch seedlings (Betula pendula). Plant Soil 169:547–553

    Article  Google Scholar 

  • Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22:583–621

    Article  CAS  Google Scholar 

  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340

    Article  PubMed  CAS  Google Scholar 

  • Takano J, Miwa K, Yuan L, von Wirén N, Fujiwara T (2005) Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proc Natl Acad Sci 102:12276–12281

    Article  PubMed  CAS  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  Google Scholar 

  • Tang J, Chen J, Chen X (2006) Response of 12 weedy species to elevated CO2 in low-phosphorus-availability soil. Ecol Res 21:664–670

    Article  CAS  Google Scholar 

  • Taub DR, Wang X (2008) Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J Integ Plant Biol 50:1365–1374

    Article  CAS  Google Scholar 

  • Vandermeiren K, Black C, Lawson T, Casanova MA, Ojanperä K (2002) Photosynthetic and stomatal responses of potatoes grown under elevated CO2 and/or O3– results from the European CHIP-programme. Europ J Agron 17:337–352

    Article  CAS  Google Scholar 

  • Wilson JB (1988) A review of evidence on the control of shoot:root ratio, in relation to models. Ann Bot 61:433–449

    Google Scholar 

  • Wimmer MA, Baassil ES, Brown PH, Läuchli A (2005) Boron response in wheat is genotype-dependent and related to boron uptake, translocation, allocation, plant phenological development and growth rate. Funct Plant Biol 32:507–515

    Article  CAS  Google Scholar 

  • Ziska LH (2003) The impact of nitrogen supply on the potential response of a noxious, invasive weed, Canada thistle (Cirsium arvense) to recent increases in atmospheric carbon dioxide. Physiol Plant 119:105–112

    Article  CAS  Google Scholar 

  • Ziska LH, Weerakoon W, Namuco OS, Pamplona R (1996) The influence of nitrogen on the elevated CO2 response in field grown rice. Aust J Plant Physiol 23:45–52

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the U.S. Department of Agriculture, Agricultural Research Service (SCA 58-3607-4-119 to J. Gray and S.A. Heckathorn). The authors thank Douglas Sturtz and Alycia Pittenger for nutrient analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasmita Mishra.

Additional information

Responsible Editor: Robert Reid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S., Heckathorn, S.A. & Frantz, J.M. Elevated CO2 affects plant responses to variation in boron availability. Plant Soil 350, 117–130 (2012). https://doi.org/10.1007/s11104-011-0888-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0888-6

Keywords

Navigation