Skip to main content

Advertisement

Log in

The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Soil salinity is the major cause limiting plant productivity worldwide. Nitrogen-fixing bacteria were enriched and characterised from roots of Salicornia brachiata, an extreme halophyte which has substantial economic value as a bioresource of diverse and valuable products. Nitrogen-free semisolid NFb medium with malate as carbon source and up to 4% NaCl were used for enrichment and isolation of diazotrophic bacteria. The isolates were tested for plant growth-promoting traits and 16S rRNA, nifH and acdS genes were analysed. For selected strains, plant growth-promoting activities were tested in axenically grown Salicornia seedlings at different NaCl concentrations (0–0.5M). New halotolerant diazotrophic bacteria were isolated from roots of S. brachiata. The isolates were identified as Brachybacterium saurashtrense sp. nov., Zhihengliuella sp., Brevibacterium casei, Haererehalobacter sp., Halomonas sp., Vibrio sp., Cronobacter sakazakii, Pseudomonas spp., Rhizobium radiobacter, and Mesorhizobium sp. Nitrogen fixation as well as plant growth-promoting traits such as indole acetic acid (IAA) production, phosphate solubilisation, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity were demonstrated. For Brachybacterium saurashtrense and Pseudomonas sp., significant plant growth-promoting activities were observed in Salicornia in salt stress conditions. Salicornia brachiata is a useful source of new halotolerant diazotrophic bacteria with plant growth-promoting potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdul Baki AA, Anderson JD (1973) Vigour determination in soya bean by multiple criteria. Crop Sci 13:630–633

    Article  Google Scholar 

  • Argandonña M, Fernaàndez-Carazo R, Llamas I, Martínez-Checa F, Caba JM, Quesada E, Moral A (2005) The moderately halophilic bacterium Halomonas maura is a free-living diazotroph. FEMS Microbiol Lett 244:69–74

    Article  Google Scholar 

  • Bagwell CE, Piceno YM, Ashburne-Lucas A, Lovell CR (1998) Physiological diversity of the rhizosphere diazotroph assemblages of selected salt marsh grasses. Appl Environ Microbiol 64:4276–4282

    PubMed  CAS  Google Scholar 

  • Bashan Y, Moreno M, Troyo E (2000) Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol Fertil Soils 32:265–272

    Article  CAS  Google Scholar 

  • Cartieaux FP, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  Google Scholar 

  • Chabot R, Antoun H, Kloepper JW, Beauchamp CJ (1996) Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol 62:2767–2772

    PubMed  CAS  Google Scholar 

  • Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2007) Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus sindicus, a perennial grass of Thar Desert, India. Microb Ecol 54:82–90

    Article  PubMed  Google Scholar 

  • Collins MD (1992) The genus Brevibacterium. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer K-H (eds) The Prokaryotes Springer, New York, pp 1351–1354

  • Cummings SP, Gyaneshwar P, Vinuesa P, Farrugia FT et al (2009) Nodulation of Sesbania species by Rhizobium (Agrobacterium) strain IRBG74 and other rhizobia. Environ Microbiol 11:2510–2529

    Article  PubMed  CAS  Google Scholar 

  • Doebereiner J (1988) Isolation and identification of root-associated diazotrophs. Plant Soil 110:207–212

    Article  Google Scholar 

  • Doebereiner J (1995) Isolation and identification of aerobic nitrogen-fixing bacteria from soil and plants. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, London, pp 134–141

    Google Scholar 

  • Egamberdiyeva D, Islam KR (2008) Salt-tolerant rhizobacteria: plant growth promoting traits and physiological characterization within ecologically stressed environments. In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions – strategies and techniques to promote plant growth. WILEY, Weilheim, pp 257–281

    Google Scholar 

  • Faisal M, Hasnain S (2006) Colonization potential of Ochrobacterium intermedium Bacillus cereus and Brevibacterium sp. Triticum aestivum and Helianthus annuus roots. J Plant Sci 1:36–41

    Article  Google Scholar 

  • FAO (2008) FAO Land and Plant Nutrition Management Service. http://www.fao.org/ag/agl/agll/spush/

  • Felsenstein J (1985) Confidence limits on phylogenesis: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspectives and future prospects. Am J Altern Agric 1:51–57

    Google Scholar 

  • Gontia I, Kavita K, Schmid M, Hartmann A, Jha B (2011) Brachybacterium saurashtrense sp. nov., a halotolerant root-associated bacterium with plant growth promoting potentials. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.023176-0

  • Hallmann J, Quadt-Hallmann A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hartmann A (1988) Ecophysiological aspects of growth and nitrogen fixation in Azospirillum spp. Plant Soil 110:225–238

    Article  CAS  Google Scholar 

  • Hartmann A, Prabhu SR, Galinski EA (1991) Osmotolerance of diazotrophic rhizosphere bacteria. Plant Soil 137:105–109

    Article  CAS  Google Scholar 

  • Hogstrom A, Pinhassi J, Zweifel UL (2000) Biogeographical diversity among marine bacterioplankton. Aquat Microb Ecol 21:233–244

    Google Scholar 

  • Holguin G, Bashan Y (1996) Nitrogen-fixation by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphylococcus sp.). Soil Biol Biochem 28:1651–1660

    Article  CAS  Google Scholar 

  • Iversen C, Mullane N, McCardell B, Tall BD, Lehner A, Fanning S, Stephan R, Joosten H (2008) Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol 58:1442–1447

    Article  PubMed  CAS  Google Scholar 

  • Jha B, Thakur MC, Gontia I, Albrecht V, Stoffels M, Schmid M, Hartmann A (2009) Isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars. Eur J Soil Biol 45:62–77

    Article  CAS  Google Scholar 

  • Kirchhof G, Eckert B, Stoffels M, Baldani JI, Reis VM, Hartmann A (2001) Herbaspirillum frisingense sp. nov. new nitrogen fixing bacterial species that occurs in C-4 fibre plants. Int J Syst Evol Microbiol 51:157–168

    PubMed  CAS  Google Scholar 

  • Kovtunovych G, Lar O, Kamalova S, Kordyum V, Kleiner D, Kozyrovska N (1999) Correlation between pectate lyase activity and ability of diazotrophic Klebsiella oxytoca VN13 to penetrate into plant tissues. Plant Soil 215:1–6

    Article  CAS  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  PubMed  CAS  Google Scholar 

  • Kushner DJ, Kamekura M (1988) Physiology of halophilic eubacteria. In: Rodriguez-Valera F (ed) Halophilic Bacteria. CRC Press, Boca Raton, pp 109–138

    Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85:843–847

    Article  Google Scholar 

  • Loganathan P, Nair S (2004) Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54:1185–1190

    Article  PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance in tomato and pepper plants to salt stress. Plant Physiol Biochem 167:650–656

    Google Scholar 

  • Nabti E, Sahnoune M, Adjrad S, Van Dommelen A, Ghoul M, Schmid M, Hartmann A (2007) A halophilic and osmotolerant Azospirillum brasilense strain from Algerian soil restores wheat growth under saline conditions. Eng Life Sci 7:354–360

    Article  CAS  Google Scholar 

  • Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M, Schmid M, Hartmann A (2010) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29:6–22

    Article  CAS  Google Scholar 

  • Ozawa T, Wu J, Fujii S (2007) Effect of inoculation with a strain of Pseudomonas pseudoalcaligenes isolated from the endorhizosphere of Salicornia europea on salt tolerance of the glasswort. Soil Sci Plant Nutr 53:12–16

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  CAS  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  PubMed  CAS  Google Scholar 

  • Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103

    Article  PubMed  CAS  Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, Deley J (1987) Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca) (L.) (Kunth). Int J Syst Bacteriol 37:43–51

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Interactions of graminaceous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17:29–54

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T, Claeyssens M, van Montagu M (1993) Cloning, expression in Escherichia coli, and characterization of cellulytic enzymes of Azoarcus sp., a root-invading diazotroph. J Bacteriol 175:7056–7065

    PubMed  CAS  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Roesch LFW, de Quadros PD, Camargo FAO, Triplett EW (2007) Screening of diazotrophic bacteria Azopirillum spp. for nitrogen fixation and auxin production in multiple field sites in Southern Brazil. World J Microbiol Biotechnol 23:1377–1383

    Article  CAS  Google Scholar 

  • Rothballer M, Schmid M, Hartmann A (2009) Diazotrophic bacterial endophytes in Gramineae and other plants. In: Pawlowski K (ed) Microbiology Monographs, Vol. 8: Procaryotic endosymbionts in plants. Springer, Berlin, pp 273–302

    Google Scholar 

  • Rueda-Puente E, Castellanos T, Troyo-Dièguez E, Díaz de León-Alvarez JL, Murillo-Amador B (2003) Effects of a nitrogen-Fixing indigenous bacterium (Klebsiella pneumoniae) on the growth and development of the halophyte Salicornia bigelovii as a new crop for saline environments. J Agro Crop Sci 189:323–332

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sarig S, Kapulnik Y, Nur I, Okon Y (1984) Response of non-irrigated Sorghum bicolor to Azospirillum inoculation. Exp Agric 20:59–66

    Article  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Google Scholar 

  • Schmid M, Iversen C, Gontia I, Stephan R, Hofmann A, Hartmann A, Jha B, Eberl L, Riedel K, Lehner A (2009) Evidence for a plant associated natural habitat of Cronobacter spp. Res Microbiol 160:608–614

    Article  PubMed  Google Scholar 

  • Schubert K, Ludwig W, Springer N, Kroppenstedt RM, Accolas JP, Fiedler F (1996) Two coryneform bacteria isolated from the surface of French Gruyére and Beaufort cheeses are new species of the genus Brachybacterium: Brachybacterium alimentarium sp. nov. and Brachybacterium tyrofermentans sp. nov. Int J Syst Bacteriol 46:81–87

    Article  PubMed  CAS  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato plants by N-acylhomoserine lactone–producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  PubMed  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assays for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria.Can J Microbiol 44:833–843

    Google Scholar 

  • Sharma M, Schmid M, Rothballer M, Hause G, Zuccaro A, Imani J, Schäfer P, Hartmann A, Kogel K-H (2008) Detection and identification of mycorrhiza helper bacteria intimately associated with representatives of the order Sebacinales. Cell Microbiol 10:2235–2246

    Article  PubMed  CAS  Google Scholar 

  • Soussi M, Santamaria M, Ocãna A, Lluch C (2001) Effects of salinity on protein and lipolysaccharide pattern in a salt-tolerant strain of Mesorhizobium ciceri. J Appl Microbiol 90:476–481

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. PNAS 101:11030–11035

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. doi:10.1093/molbev/msm092

  • Tripathi AK, Nagarajan T, Verma SC, Le Rudulier D (2002a) Inhibition of biosynthesis and activity of nitrogenase in Azospirillum brasilense Sp7 under salinity stress. Curr Microbiol 44:363–367

    Article  PubMed  CAS  Google Scholar 

  • Tripathi AK, Verma SC, Ron EZ (2002b) Molecular characterization of salt tolerant bacterial community in the rice rhizosphere. Res Microbiol 153:579–584

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Knill E, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    PubMed  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Yang HL, Sun XL, Song W, Wang YS, Cai MY (1999) Screening, identification and distribution of endophytic associative diazotrophs isolated form rice plants. Acta Bot Sinica 41:927–931

    Google Scholar 

  • Yanni YG, Rizk RY, Abd El-Fattah FK et al (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870

    CAS  Google Scholar 

  • You CB, Zhou FY (1989) Non-nodular endorhizospheric nitrogen fixation in wetland rice. Can J Microbiol 35:403–408

    Article  CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed  CAS  Google Scholar 

  • Zhang YQ, Schumann P, Yu LY, Liu HY, Zhang YQ, Xu LH, Stackebrandt E, Jiang CL, Li WJ (2007) Zhihengliuella halotolerans gen. nov., sp. nov., a novel member of the family Micrococcaceae. Int J Syst Evol Microbiol 57:1018–1023

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support received from CSIR, New Delhi (NWP-020), is thankfully acknowledged. Iti Gontia was the recipient of a Junior Research Fellowship from GSBTM, DST, Govt of Gujarat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavanath Jha.

Additional information

This communication is dedicated to Dr. Johanna Doebereiner in appreciation of her great impact on the research on diazotrophic bacteria that promote plant growth.

Responsible Editor: Euan K. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, B., Gontia, I. & Hartmann, A. The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356, 265–277 (2012). https://doi.org/10.1007/s11104-011-0877-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0877-9

Keywords

Navigation