Skip to main content
Log in

Root hairs: development, growth and evolution at the plant-soil interface

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Root hairs are tip-growing extensions from root epidermal cells that play important roles in nutrient uptake and in plant-soil interactions. In this review, we discuss the major environmental, physiological and genetic factors that regulate the differentiation and growth of root hairs in angiosperms. Root hair cells are arranged in a number of different patterns in the root epidermis of different species. In Arabidopsis (Arabidopsis thaliana L.), a striped pattern of hair and non-hair files is generated by an intercellular gene regulatory network that involves feedback loops and protein movement between neighbouring cells. The growth of root hairs can be broadly divided into an initiation phase, where site selection and bulge formation take place, and an elongation phase. The initiation phase is regulated by different transcription factors, GTPases and cell wall modification enzymes. During the elongation phase root hairs grow by tip growth, a type of polarised cell expansion that is restricted to the growing apex. Root hair elongation is characterized by a strong polarisation of the cytoskeleton, active cell wall modifications and dynamic ion movements. Finally, we discuss the functional and genetic similarities between the root hairs of angiosperms and the rhizoids of bryophytes and ferns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdolzadeh A, Wang X, Veneklaas EJ, Lambers H (2010) Effects of phosphorus supply on growth, phosphate concentration and cluster-root formation in three Lupinus species. Ann Bot 105:365–374

    Article  PubMed  CAS  Google Scholar 

  • Andrews M (1987) Phosphate uptake by the components parts of Chara hipsida. Br Phycol J 22:49–53

    Article  Google Scholar 

  • APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Salaj J, Mathur J, Braun M, Jasper F, Samaj J, Chua N-H, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632

    Article  PubMed  CAS  Google Scholar 

  • Banks JA (2009) Selaginella and 400 million years of separation. Annu Rev Plant Biol 60:223–238

    Article  PubMed  CAS  Google Scholar 

  • Bates TR, Lynch JP (1996) Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ 19:529–538

    Article  CAS  Google Scholar 

  • Bates TR, Lynch JP (2000) Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana (Brassicaceae). Am J Bot 87:958–963

    Article  PubMed  CAS  Google Scholar 

  • Baumberger N, Ringli C, Keller B (2001) The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana. Gen Dev 15:1128–1139

    Article  CAS  Google Scholar 

  • Berger F, Haseloff J, Schiefelbein J, Dolan L (1998) Positional information in root epidermis is defined during embryogenesis and acts in domains with strict boundaries. Curr Biol 8:421–430

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt C, Lee MM, Gonzalez A, Zhang F, Lloyd A, Schiefelbein J (2003) The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 130:6431–6439

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt C, Zhao M, Gonzalez A, Lloyd A, Schiefelbein J (2005) The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development 132:291–298

    Article  PubMed  CAS  Google Scholar 

  • Bibikova TN, Zhigilei A, Gilroy S (1997) Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta 203:495–505

    Article  PubMed  CAS  Google Scholar 

  • Bibikova TN, Jacob T, Dahse I, Gilroy S (1998) Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana. Development 125:2925–2934

    PubMed  CAS  Google Scholar 

  • Bibikova TN, Blancaflor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J 17:657–665

    Article  PubMed  CAS  Google Scholar 

  • Box RJ (1986) Quantitative short-term uptake of inorganic-phosphate by the chara-hispida rhizoid. Plant Cell Environ 9:501–506

    Article  CAS  Google Scholar 

  • Bruce J (1976) Comparative studies in the biology of Lycopodium carolinianum. Am Fern J 66:125–137

    Article  Google Scholar 

  • Bünning E (1951) Über die Differenzierungsvorgänge in der Cruciferenwurzel. Planta 39:126–153

    Article  Google Scholar 

  • Caro E, Castellano MM, Gutierrez C (2007) A chromatin link that couples cell division to root epidermis patterning in Arabidopsis. Nature 447:213–217

    Article  PubMed  CAS  Google Scholar 

  • Carol RJ, Dolan L (2002) Building a hair: tip growth in Arabidopsis thaliana root hairs. Philos Trans R Soc Lond B Biol Sci 357:815–821

    Article  PubMed  CAS  Google Scholar 

  • Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L (2005) A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438:1013–1016

    Article  PubMed  CAS  Google Scholar 

  • Cho HT, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14:3237–3253

    Article  PubMed  CAS  Google Scholar 

  • Clowes F (2000) Pattern in root meristem development in angiosperms. New Phytol 146:83–94

    Article  Google Scholar 

  • Cormack RGH (1937) The development of root hairs by Elodea canadensis. New Phytol 36:19–25

    Article  Google Scholar 

  • Cormack RGH (1947) A comparative study of developing epidermal cells in white mustard and tomato roots. Am J Bot 34:310–314

    Article  Google Scholar 

  • Costa S, Dolan L (2003) Epidermal patterning genes are active during embryogenesis in Arabidopsis. Development 130:2893–2901

    Article  PubMed  CAS  Google Scholar 

  • Costa S, Shaw P (2006) Chromatin organization and cell fate switch respond to positional information in Arabidopsis. Nature 439:493–496

    Article  PubMed  CAS  Google Scholar 

  • Crandall-Stotler B, Stotler RE, Long DG (2008) Morphology and classification of the Marchantiophyta. In: Goffinet B, Shaw AJ (eds) Bryophyte biology. Cambridge, pp 1–54

  • Cutter E, Feldman L (1970) Trichoblasts in Hydrocharis. I. Origin, differentiation, dimensions and growth. Am J Bot 57:190–201

    Article  Google Scholar 

  • Cutter EG, Hung CY (1972) Symmetric and asymmetric mitosis and cytokinesis in the root tip of Hydrocharis morsus-ranae L. J Cell Sci 11:723–737

    PubMed  CAS  Google Scholar 

  • Czarnota MA, Paul RN, Weston LA, Duke SO (2003) Anatomy of sorgoleone-secreting root hairs of Sorghum species. Int J Plant Sci 164:861–866

    Article  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Desbrosses G, Josefsson C, Rigas S, Hatzopoulos P, Dolan L (2003) AKT1 and TRH1 are required during root hair elongation in Arabidopsis. J Exp Bot 54:781–788

    Article  PubMed  CAS  Google Scholar 

  • Di Cristina M, Sessa G, Dolan L, Linstead P, Baima S, Ruberti I, Morelli G (1996) The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant J 10:393–402

    Article  PubMed  CAS  Google Scholar 

  • Ding W, Yu Z, Tong Y, Huang W, Chen H, Wu P (2009) A transcription factor with a bHLH domain regulates root hair development in rice. Cell Res 19:1309–1311

    Article  PubMed  Google Scholar 

  • Dittmer HJ (1937) A quantitative study of the roots and root hairs of a winter rye plant (Secale creale). Am J Bot 24:417

    Article  Google Scholar 

  • Dittmer HJ (1949) Root hair variations in plant species. Am J Bot 36:152–155

    Article  Google Scholar 

  • Dittmer HJ, Reinhart J (1948) Root hair development on Gymnosperm seedlings. Am J Bot 35:791

    Google Scholar 

  • Dolan L (1996) Pattern in the root epidermis: an interplay of diffusible signals and cellular geometry. Ann Bot 77:547–553

    Article  Google Scholar 

  • Dolan L (2001) The role of ethylene in root hair growth in Arabidopsis. J Plant Nutr Soil Sci 164:141–145

    Article  CAS  Google Scholar 

  • Dolan L, Costa S (2001) Evolution and genetics of root hair stripes in the root epidermis. J Exp Bot 52:413–417

    PubMed  CAS  Google Scholar 

  • Dolan L, Roberts K (1995) The development of cell pattern in the root epidermis. Philos Trans R Soc Lond B Biol Sci 350:95–99

    Article  PubMed  CAS  Google Scholar 

  • Dolan L, Duckett CM, Grierson C, Linstead P, Schneider K, Lawson E, Dean C, Poethig S, Roberts K (1994) Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development 120:2465–2474

    CAS  Google Scholar 

  • Edwards D (1986) Aglaophyton major, a non-vascular land-plant from the Devonian Rhynie Chert. Bot J Linn Soc 93:173–204

    Article  Google Scholar 

  • Favery B, Ryan E, Foreman J, Linstead P, Boudonck K, Steer M, Shaw P, Dolan L (2001) KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev 15:79–89

    Article  PubMed  CAS  Google Scholar 

  • Fischer U, Ikeda Y, Ljung K, Serralbo O, Singh M, Heidstra R, Palme K, Scheres B, Grebe M (2006) Vectorial information for Arabidopsis planar polarity is mediated by combined AUX1, EIN2, and GNOM activity. Curr Biol 16:2143–2149

    Article  PubMed  CAS  Google Scholar 

  • Foehse D, Jungk A (1983) Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant Soil 74:359–368

    Article  CAS  Google Scholar 

  • Foreman J, Dolan L (2001) Root hairs as a model system for studying plant cell growth. Ann Bot 88:1–7

    Article  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE (2003) Phosphorus (P) uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low- and high-P soils. Plant Cell Environ 26:1759–1766

    Article  CAS  Google Scholar 

  • Gahoonia TS, Care D, Nielsen NE (1997) Root hairs and phosphorus acquisition of wheat and barley cultivars. In: Plant soil. Springer, Netherlands, pp 181-188-188

  • Galway ME, Masucci JD, Lloyd AM, Walbot V, Davis RW, Schiefelbein JW (1994) The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Dev Biol 166:740–754

    Article  PubMed  CAS  Google Scholar 

  • Gaymard F, Cerutti M, Horeau C, Lemaillet G, Urbach S, Ravallec M, Devauchelle G, Sentenac H, Thibaud J-B (1996) The baculovirus/insect cell system as an alternative to Xenopus oocytes: First characterization of the AKT1 K+ channel from Arabidopsis Thaliana. J Biol Chem 271:22863–22870

    Article  PubMed  CAS  Google Scholar 

  • Goffinet B, Buck WR, Shaw AJ (2008) Morphology, anatomy, and classification of the Bryophyta. In: Goffinet B, Shaw AJ (eds) Bryophyte biology. Cambridge

  • Graham LE, Graham JM, Wilcox L (2009) Algae. Pearson Bejamin Cummings, San Francisco

    Google Scholar 

  • Grebe M, Friml J, Swarup R, Ljung K, Sandberg G, Terlou M, Palme K, Bennett MJ, Scheres B (2002) Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Curr Biol 12:329–334

    Article  PubMed  CAS  Google Scholar 

  • Hogh-Jensen H, Pedersen M (2003) Morphological plasticity by crop plants and their potassium use efficiency. J Plant Nutr 26:969–984

    Article  CAS  Google Scholar 

  • Ikeda Y, Men S, Fischer U, Stepanova AN, Alonso JM, Ljung K, Grebe M (2009) Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis. Nat Cell Biol 11:731–738

    Article  PubMed  CAS  Google Scholar 

  • Ishida T, Kurata T, Okada K, Wada T (2008) A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol 59:365–386

    Article  PubMed  CAS  Google Scholar 

  • Jones MA, Shen JJ, Fu Y, Li H, Yang Z, Grierson CS (2002) The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14:763–776

    Article  PubMed  CAS  Google Scholar 

  • Jones AR, Kramer EM, Knox K, Swarup R, Bennett MJ, Lazarus CM, Leyser HMO, Grierson CS (2009) Auxin transport through non-hair cells sustains root-hair development. Nat Cell Biol 11:78–84

    Article  PubMed  CAS  Google Scholar 

  • Jungk A (2001) Root hairs and the acquisition of plant nutrients from soil. J Plant Nutr Soil Sci 164:121–129

    Article  CAS  Google Scholar 

  • Karas B, Amyot L, Johansen C, Sato S, Tabata S, Kawaguchi M, Szczyglowski K (2009) Conservation of lotus and Arabidopsis basic helix-loop-helix proteins reveals new players in root hair development. Plant Physiol 151:1175–1185

    Article  PubMed  CAS  Google Scholar 

  • Ketelaar T, Faivre-Moskalenko C, Esseling JJ, de Ruijter NCA, Grierson CG, Dogterom M, Emons AMC (2002) Positioning of nuclei in Arabidopsis root hairs. Plant Cell 14:2941–2955

    Article  PubMed  CAS  Google Scholar 

  • Ketelaar T, de Ruijter NCA, Emons AMC (2003) Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs. Plant Cell 15:285–292

    Article  PubMed  CAS  Google Scholar 

  • Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10:51–62

    Article  PubMed  CAS  Google Scholar 

  • Kim CM, Park SH, Je BI, Park SH, Park SJ, Piao HL, Eun MY, Dolan L, C-d H (2007) OsCSLD1, a cellulose synthase-like D1 gene. Is required for root hair morphogenesis in rice. Plant Physiol 143:1220–1230

    Article  PubMed  CAS  Google Scholar 

  • Kirik V, Simon M, Huelskamp M, Schiefelbein J (2004) The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Dev Biol 268:506–513

    Article  PubMed  CAS  Google Scholar 

  • Knox K, Grierson CS, Leyser O (2003) AXR3 and SHY2 interact to regulate root hair development. Development 130:5769–5777

    Article  PubMed  CAS  Google Scholar 

  • Kurata T, Ishida T, Kawabata-Awai C, Noguchi M, Hattori S, Sano R, Nagasaka R, Tominaga R, Koshino-Kimura Y, Kato T, Sato S, Tabata S, Okada K, Wada T (2005) Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132:5387–5398

    Article  PubMed  CAS  Google Scholar 

  • Kwak S-H, Schiefelbein J (2007) The role of the SCRAMBLED receptor-like kinase in patterning the Arabidopsis root epidermis. Dev Biol 302:118–131

    Article  PubMed  CAS  Google Scholar 

  • Kwak S-H, Schiefelbein J (2008) A feedback mechanism controlling SCRAMBLED receptor accumulation and cell-type pattern in Arabidopsis. Curr Biol 18:1949–1954

    Article  PubMed  CAS  Google Scholar 

  • Kwak S-H, Shen R, Schiefelbein J (2005) Positional signaling mediated by a receptor-like kinase in Arabidopsis. Science 307:1111–1113

    Article  PubMed  CAS  Google Scholar 

  • Leavitt RG (1904) Trichomes of the root in vascular cryptogams and angiosperms. Proc Boston Soc Nat Hist 31:273–313

    Google Scholar 

  • Lee MM, Schiefelbein J (1999) WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99:473–483

    Article  PubMed  CAS  Google Scholar 

  • Lee MM, Schiefelbein J (2002) Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback. Plant Cell 14:611–618

    Article  PubMed  CAS  Google Scholar 

  • Lewis L, McCourt R (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556

    Article  PubMed  Google Scholar 

  • Libault M, Brechenmacher L, Cheng J, Xu D, Stacey G (2010) Root hair systems biology. Trends Plant Sci 15:641–650

    Article  PubMed  CAS  Google Scholar 

  • Macpherson N, Takeda S, Shang Z, Dark A, Mortimer J, Brownlee C, Dolan L, Davies J (2008) NADPH oxidase involvement in cellular integrity. Planta 227:1415–1418

    Article  PubMed  CAS  Google Scholar 

  • Masucci JD, Rerie WG, Foreman DR, Zhang M, Galway ME, Marks MD, Schiefelbein JW (1996) The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development 122:1253–1260

    PubMed  CAS  Google Scholar 

  • Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E, Linstead P, Schaefer DG, Dolan L (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316:1477–1480

    Article  PubMed  CAS  Google Scholar 

  • Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20:2779–2788

    Article  PubMed  CAS  Google Scholar 

  • Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S (2007) Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc Natl Acad Sci 104:20996–21001

    Article  PubMed  CAS  Google Scholar 

  • Monshausen GB, Messerli MA, Gilroy S (2008) Imaging of the Yellow Cameleon 3.6 indicator reveals that elevations in cytosolic Ca2+ follow oscillating increases in growth in root hairs of Arabidopsis. Plant Physiol 147:1690–1698

    Article  PubMed  CAS  Google Scholar 

  • Muller M, Schmidt W (2004) Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiol 134:409–419

    Article  PubMed  CAS  Google Scholar 

  • Nishimura T, Yokota E, Wada T, Shimmen T, Okada K (2003) An Arabidopsis ACT2 dominant-negative mutation, which disturbs F-actin polymerization, reveals its distinctive function in root development. Plant Cell Physiol 44:1131–1140

    Article  PubMed  CAS  Google Scholar 

  • Nishitani K, Tominaga R (1992) Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J Biol Chem 267:21058–21064

    PubMed  CAS  Google Scholar 

  • Oldroyd GED, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  PubMed  CAS  Google Scholar 

  • Parton R, Dyer A, Read N, Trewavas A (2000) Apical structure of actively growing fern rhizoids examined by DIC and confocal microscopy. Ann Bot-London 85:233–245

    Article  Google Scholar 

  • Pearson H (1969) Rhizoids and root hairs of ferns. Am Fern J 59:107–122

    Article  Google Scholar 

  • Pemberton LMS, Tsai S-L, Lovell PH, Harris PJ (2001) Epidermal patterning in seedling roots of eudicotyledons. Ann Bot 87:649–654

    Article  Google Scholar 

  • Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560

    Article  PubMed  CAS  Google Scholar 

  • Reeder JR, von Maltzahn K (1953) Taxonomic significance of root-hair development in the gramineae. Proc Natl Acad Sci USA 39:593–598

    Article  PubMed  CAS  Google Scholar 

  • Renzaglia KS, Villareal JC, Duff JR (2008) New insights into morphology, anatomy, and systemics of hornworts. In: Goffinet B, Shaw AJ (eds) Bryophyte biology. Cambridge

  • Rerie WG, Feldmann KA, Marks MD (1994) The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes Dev 8:1388–1399

    Article  PubMed  CAS  Google Scholar 

  • Rigas S, Debrosses G, Haralampidis K, Vicente-Agullo F, Feldmann KA, Grabov A, Dolan L, Hatzopoulos P (2001) TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13:139–151

    Article  PubMed  CAS  Google Scholar 

  • Ringli C, Baumberger N, Diet A, Frey B, Keller B (2002) ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiol 129:1464–1472

    Article  PubMed  CAS  Google Scholar 

  • Row HC, Reeder JR (1957) Root-hair development as evidence of relationships among genera of Gramineae. Am J Bot 44:596–601

    Article  Google Scholar 

  • Ryu KH, Kang YH, Y-h P, Hwang I, Schiefelbein J, Lee MM (2005) The WEREWOLF MYB protein directly regulates CAPRICE transcription during cell fate specification in the Arabidopsis root epidermis. Development 132:4765–4775

    Article  PubMed  CAS  Google Scholar 

  • Savage NS, Walker T, Wieckowski Y, Schiefelbein J, Dolan L, Monk NAM (2008) A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis. PLoS Biol 6:e235

    Article  PubMed  CAS  Google Scholar 

  • Schellmann S, Schnittger A, Kirik V, Wada T, Okada K, Beermann A, Thumfahrt J, Jurgens G, Hulskamp M (2002) TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J 21:5036–5046

    Article  PubMed  CAS  Google Scholar 

  • Schiefelbein J (2003) Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Curr Opin Plant Biol 6:74–78

    Article  PubMed  CAS  Google Scholar 

  • Schiefelbein J, Kwak S-H, Wieckowski Y, Barron C, Bruex A (2009) The gene regulatory network for root epidermal cell-type pattern formation in Arabidopsis. J Exp Bot 60:1515–1521

    Article  PubMed  CAS  Google Scholar 

  • Schmidt W, Schikora A (2001) Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development. Plant Physiol 125:2078–2084

    Article  PubMed  CAS  Google Scholar 

  • Schmidt W, Tittel J, Schikora A (2000) Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiol 122:1109–1118

    Article  PubMed  CAS  Google Scholar 

  • Shane MW, Dixon KW, Lambers H (2005) The occurrence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform-root development in Schoenus unispiculatus (Cyperaceae). New Phytol 165:887–898

    Article  PubMed  CAS  Google Scholar 

  • Simon M, Lee MM, Lin Y, Gish L, Schiefelbein J (2007) Distinct and overlapping roles of single-repeat MYB genes in root epidermal patterning. Dev Biol 311:566–578

    Article  PubMed  CAS  Google Scholar 

  • Sinnott EW, Bloch R (1939) Cell polarity and the differentiation of root hairs. Proc Natl Acad Sci USA 25:248–252

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  PubMed  CAS  Google Scholar 

  • Tominaga R, Iwata M, Okada K, Wada T (2007) Functional analysis of the epidermal-specific MYB Genes CAPRICE and WEREWOLF in Arabidopsis. Plant Cell 19:2264–2277

    Article  PubMed  CAS  Google Scholar 

  • Tsai S-L, Harris PJ, Lovell PH (2003) The root epidermis of Echium plantagineum L.: a novel type of pattern based on the distribution of short and long root hairs. Planta 217:238–244

    Article  PubMed  CAS  Google Scholar 

  • Van Hengel AJ, Barber C, Roberts K (2004) The expression patterns of arabinogalactan-protein AtAGP30 and GLABRA2 reveal a role for abscisic acid in the early stages of root epidermal patterning. Plant J 39:70–83

    Article  PubMed  CAS  Google Scholar 

  • Vermeer CP, Escher M, Portielje R, de Klein JJM (2003) Nitrogen uptake and translocation by Chara. Aquat Bot 76:245–258

    Article  CAS  Google Scholar 

  • Véry A-A, Davies JM (2000) Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proc Natl Acad Sci USA 97:9801–9806

    Article  PubMed  Google Scholar 

  • Wada T, Tachibana T, Shimura Y, Okada K (1997) Epidermal cell differentiation in Arabidopsis determined by a Myb Homolog, CPC. Science 277:1113–1116

    Article  PubMed  CAS  Google Scholar 

  • Wada T, Kurata T, Tominaga R, Koshino-Kimura Y, Tachibana T, Goto K, Marks MD, Shimura Y, Okada K (2002) Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development 129:5409–5419

    Article  PubMed  CAS  Google Scholar 

  • Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1350

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Liao H, Yan X, Zhuang B, Dong Y (2004) Genetic variability for root hair traits as related to phosphorus status in soybean. Plant Soil 261:77–84

    Article  CAS  Google Scholar 

  • Xu C-R, Liu C, Wang Y-L, Li L-C, Chen W-Q, Xu Z-H, Bai S-N (2005) Histone acetylation affects expression of cellular patterning genes in the Arabidopsis root epidermis. Proc Natl Acad Sci USA 102:14469–14474

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Liao H, Beebe SE, Blair MW, Lynch JP (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil 265:17–29

    Article  CAS  Google Scholar 

  • Yi K, Menand B, Bell E, Dolan L (2010) A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nat Genet 42:264–267

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y, Sano R, Wada T, Takabayashi J, Okada K (2009) Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Development 136:1039–1048

    Article  PubMed  CAS  Google Scholar 

  • Zhang YJ, Lynch JP, Brown KM (2003) Ethylene and phosphorus availability have interacting yet distinct effects on root hair development. J Exp Bot 54:2351–2361

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant Soil 270:299–310

    Article  CAS  Google Scholar 

  • Zhu C, Gan L, Shen Z, Xia K (2006) Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis. J Exp Bot 57:1299–1308

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our research in this area is funded by the European Research Council Advanced Grant program (EVO500), European Union Research Training Network (PLANTORIGINS), a responsive mode grant from the Biotechnology and Biology Research Council, a European Molecular Biology Organisation long term fellowship (SD), a European Union Marie Curie Mobility fellowship (SD), the Clarendon Fund of Oxford University (TT), Fundação para a Ciência e a Tecnologia (Portugal) (NDP), and the Ministerio de Education y Ciencia (MP). All of these funding sources are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam Dolan.

Additional information

Responsible Editor: Philippe Hinsinger.

Sourav Datta, Chul Min Kim, Monica Pernas, Nuno D. Pires, Hélène Proust, Thomas Tam and Priya Vijayakumar contributed equally to this review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, S., Kim, C.M., Pernas, M. et al. Root hairs: development, growth and evolution at the plant-soil interface. Plant Soil 346, 1–14 (2011). https://doi.org/10.1007/s11104-011-0845-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0845-4

Keywords

Navigation