Skip to main content
Log in

Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f.sp. niveum

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Paenibacillus polymyxa SQR-21 has been identified as a potential agent for the biocontrol of Fusarium wilt in watermelon, which is caused by the pathogenic fungus Fusarium oxysporum f.sp. niveum (FON). In the present study, the effects of root exudates from watermelon plants inoculated or non-inoculated with either SQR-21 or FON on conidial germination of FON were investigated. Compared to the control, conidial germination was decreased with root exudates from SQR-21-inoculated plants, but conidial germination was enhanced by root exudates from FON-inoculated plants. Maximal germination was found with root exudates from FON-inoculated plants after 30 d, which was 1.35 times more germination than the control. A split-root system was designed to verify that the alterations of the exudation pattern in SQR-21- inoculated or FON-inoculated watermelon roots were not only local, but also systemic. Cinnamic acid was found in the watermelon root exudates. An assay to test the effects of cinnamic acid on conidial germination of FON revealed that the stimulation of conidial germination was observed from cinnamic acid concentrations ranging from 0 to 30 μg/ml. In conclusion, both of SQR-21 and FON systemically affects watermelon root exudates. These results will help to the better understanding of the plant-microbe communication and will guide to improve the biocontrol strategies against Fusarium wilt of watermelon plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Banwart WL, Porter PM, Granato TC, Hassett JJ (1985) HPLC separation and wavelength area ratios of more than 50 phenolic acids and flavonoids. J Chem Ecol 11:383–395

    Article  CAS  Google Scholar 

  • Bertin C, Yang XH, Waston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  CAS  PubMed  Google Scholar 

  • De-la-Pena C, Lei Z, Watson BS, Sumner LW, Vivanco JM (2008) Root-microbe communication through protein secretion. J Biol Chem 283:25247–25255

    Article  CAS  PubMed  Google Scholar 

  • Dijksterhuis J, Sanders M, Gorris LG, Smid EJ (1999) Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J Appl Microbiol 86:13–21

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Mishra AK, Dileep Kumar BS (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461

    Article  CAS  Google Scholar 

  • Gapillout I, Milat ML, Blein JR (1995) Effects of fusaric acid on cells from tomato cultivars resistant or susceptible to Fusarium oxysporum f. sp. lycopersici. Eur J Plant Pathol 102:127–132

    Article  Google Scholar 

  • Haggag WM, Timmusk S (2008) Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J Appl Microbiol 104:961–969

    Article  CAS  PubMed  Google Scholar 

  • Hao WY, Ren LX, Ran W, Shen QR (2010) Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f.sp. niveum. Plant Soil. doi:10.1007/s11104-11010-10505-11100

    Google Scholar 

  • Joffe AZ (1986) Fusarium species: their biology and toxicology. Wiley, New York, 173

    Google Scholar 

  • Khan Z, Kim SG, Jeon YH, Khan HU, Son SH, Kim YH (2008) A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresour Technol 99:3016–3023

    Article  CAS  PubMed  Google Scholar 

  • Ling N, Xue C, Huang QW, Yang XM, Xu YC, Shen QR (2010) Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. Biocontrol 55:673–683

    Article  Google Scholar 

  • Mandeel QA (2006) Influence of plant root exudates, germ tube orientation and passive conidia transport on biological control of fusarium wilt by strains of nonpathogenic Fusarium oxysporum. Mycopathologia 161:173–182

    Article  PubMed  Google Scholar 

  • Pueppke SG, Bolanos-Vasquez MC, Werner D, Bec-ferte MP, Prome JC, Krishnan HB (1998) Release of flavonoids by the soybean cultivars McCall and Peking and their perception as signals by the nitrogen-fixing symbiont Sinorhizobium fredii. Plant Physiol 117:599–606

    Article  CAS  PubMed  Google Scholar 

  • Raza W, Wang Y, Shen QR (2008) Paenibacillus polymyxa: antibiotics hydrolytic enzymes and hazard assessment. J Plant Pathol 90:419–430

    CAS  Google Scholar 

  • Raza W, Yang XM, Wu HS, Wang Y, Xu YC, Shen QR (2009) Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f. sp nevium. Eur J Plant Pathol 125:471–483

    Article  CAS  Google Scholar 

  • Scheffknecht S, Mammerler R, Steinkellner S, Vierheilig H (2006) Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants. Mycorrhiza 16:365–370

    Article  CAS  PubMed  Google Scholar 

  • Steinkellner S, Mammerler R, Vierheilig H (2008) Germination of Fusarium oxysporum in root exudates from tomato plants challenged with different Fusarium oxysporum strains. Eur J Plant Pathol 122:395–401

    Article  CAS  Google Scholar 

  • Tai LM, Xu YL (2006) Effects of Fusarium oxysporum toxin on the ultrastructure of soybean ridicule tissue. Acta Phytopathologica Sinica 36:512–516

    Google Scholar 

  • Tang CS, Young CC (1982) Collection and identification of allelopathic components from the undisturbed root system of Bigalta Limpograss (Hemarthria altissinia). Plant Physiol 69:155–160

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EG (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, van West P, Gow NA, Paul Huffstutler R (2009) Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. J Appl Microbiol 106:1473–1481

    Article  CAS  PubMed  Google Scholar 

  • Vierheilig H, Lerat S, Piché Y (2003) Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by Glomus mosseae. Mycorrhiza 13:167–170

    Article  CAS  PubMed  Google Scholar 

  • Wu HS, Raza W, Fan JQ, Sun YG, Bao W, Shen QR (2008a) Cinnamic Acid Inhibits Growth but Stimulates Production of Pathogenesis Factors by in Vitro Cultures of Fusarium oxysporum f.sp. niveum. J Agr Food Chem 56:1316–1321

    Article  CAS  Google Scholar 

  • Wu HS, Raza W, Liu DY, Wu CL, Mao ZS, Xu YC, Shen QR (2008b) Allelopathic impact of artificially applied coumarin on Fusarium oxysporum f.sp. niveum. World J Microbiol Biotechnol 24:1297–1304

    Article  CAS  Google Scholar 

  • Wu HS, Yang XM, Fan JQ, Miao WG, Ling N, Shen QR (2008c) Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. Biocontrol 54:287–295

    Article  Google Scholar 

  • Ye SF, Yu JQ, Peng YH, Zheng JH, Zou LY (2004) Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant Soil 263:143–150

    Article  CAS  Google Scholar 

  • Ye SF, Zhou YH, Sun Y, Zou LY, Yu JQ (2006) Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environ Exp Bot 56:255–262

    Article  CAS  Google Scholar 

  • Yu JQ, Matsui Y (1994) Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). J Chem Ecol 20:21–31

    Article  CAS  Google Scholar 

  • Zhang SS, Raza W, Yang XM, Hu J, Huang QW, Xu YC, Liu XH, Ran W, Shen QR (2008) Control of Fusarium wilt disease of cucumber plants with the application of a bio-organic fertilizer. Biol Fert Soils 44:1073–1080

    Article  Google Scholar 

Download references

Acknowledgement

This research was financially supported by Agricultural Ministry of China (201103004) and the Nature Science Foundation of China (31070462).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiwei Huang or Qirong Shen.

Additional information

Responsible Editor: Jorge Vivanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, N., Huang, Q., Guo, S. et al. Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f.sp. niveum. Plant Soil 341, 485–493 (2011). https://doi.org/10.1007/s11104-010-0660-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0660-3

Keywords

Navigation