Skip to main content
Log in

Activity of myrosinase from Sinapis alba seeds immobilized into Ca-polygalacturonate as a simplified model of soil-root interface mucigel

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Ca-polygalacturonate is a demethoxylated component of pectins which are constitutive of plant root mucigel. In order to define the role of root mucigel in myrosinase immobilization and activity at root level, a myrosinase enzyme which had been isolated from Sinapis alba seeds was immobilized into Ca-polygalacturonate. The activity profile for the immobilized and free enzyme was evaluated using the pH-Stat method as a function of time, temperature, and pH. The Michaelis-Menten kinetic parameters change between the immobilized (V max  = 127 ± 13 U mg−1 protein; K M  = 6.28 ± 0.09 mM) and free (V max  = 17 ± 1 U mg−1 protein; K M  = 0.96 ± 0.01 mM) forms of myrosinase, probably due to conformational changes involving the active site as a consequence of enzyme immobilization. Immobilized enzyme activity evaluated as a function of different substrates gave the highest value with nasturtin, the glucosinolate that is typical of several brassicaceae plant roots containing the glucosinolate-myrosinase defensive system. No feedback regulation mechanism was found in the presence of an excess of enzymatic reaction products (i.e. allyl isothiocyanate or sulphate). The high enzyme immobilization yield into Ca-polygalacturonate and its activity preservation under different conditions suggest that the enzyme released by plants at root level could be entrapped in root mucigel in order to preserve its activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MYR:

myrosinase

GLs:

glucosinolates

PGA:

polygalacturonic acid

Ca-PG:

Calcium polygalacturonate

References

  • Andréasson E, Jørgensen LB (2003) Localization of plant myrosinases and glucosinolates. In: Romeo JT (ed) Integrative phytochemistry: from ethnobotany to molecular ecology. Pergamon, Amsterdam, pp 79–99

    Chapter  Google Scholar 

  • Barillari J, Gueyrard D, Rollin P, Iori R (2001) Barbarea verna as a source of 2-phenylethyl glucosinolate, precursor of cancer chemopreventive phenyethyl isothiocyanate. Fitoterapia 72:760–764

    Article  CAS  PubMed  Google Scholar 

  • Bernardi R, Finiguerra MG, Rossi A, Palmieri S (2003) Isolation and biochemical characterization of a basic myrosinase from ripe Crambe abyssinica seeds, highly specific for epi-progoitrin. J Agric Food Chem 51:2737–2744. doi:10.1021/jf020796g

    Article  CAS  PubMed  Google Scholar 

  • Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Phys Plant 97:194–208

    Article  CAS  Google Scholar 

  • Borek V, Morra MJ, Mc Caffrey JP (1996) Myrosinase activity in soil extracts. Soil Sci Soc Am J 60:1792–1797

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown PD, Morra MJ (1997) Control of soil-borne plant pests using glucosinolate-containing plants. Adv Agron 61:167–231. doi:0.1016/S0065-2113(08)60664-1

    Article  CAS  Google Scholar 

  • Burmeister WP, Cottaz S, Driguez H, Iori R, Palmieri S, Henrissat B (1997) The crystal structures of Sinapis alba myrosinase and a covalent glycosyl–enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure 5:663–676

    Article  CAS  PubMed  Google Scholar 

  • Carpita N, McCann M (2000) The cell wall. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants, Am Soc Plant Phys, Rockville, Mariland, pp 65–69

  • Ciurli S, Marzadori C, Benini S, Deiana S, Gessa C (1996) Urease form the bacterium Bacillus pasteurii: immobilization on Ca-polygacturonate. Soil Biol Biochem 28:811–817

    Article  CAS  Google Scholar 

  • Croft AG (1979) The determination of total glucosinolates in rapeseed meal by titration of enzyme liberated acid and the identification of individual glucosinolates. J Sci Food Agric 30:417–423

    Article  CAS  Google Scholar 

  • Deiana S, Gessa C, Marchetti M, Usai M (1995) Phenolic acid redox properties: pH influence on iron (III) reduction by caffeic acid. Soil Sci Soc Am J 59:1301–1307

    Article  CAS  Google Scholar 

  • Deiana S, Premoli A, Senette C, Gessa C, Marzadori C (2003) Role of uronic acid polymers on the availability of iron to plants. J Plant Nutr 26:1927–1941. doi:10.1081/PLN-120024254

    Article  CAS  Google Scholar 

  • Floyd RA, Ohlrogge AJ (1970) Gel formation on nodal root surface of zea mays. I. Investigation on the gel composition. Plant Soil 33:341–343

    Article  Google Scholar 

  • Galletti S, Sala E, Leoni O, Cinti S, Cerato C (2008) Aspergillus flavus transformation of glucosinolates to nitriles by an arylsulfatase and a β–thio-glucosidase. Soil Biol Biochem 40:2170–2173. doi:10.1016/j.soilbio.2008.01.029

    Article  CAS  Google Scholar 

  • Gessa C, Deiana S (1992) Ca-polygalacturonate as a model for a soil-root interface. Plant Soil 140:1–13. doi:10.1007/BF00012801

    Article  CAS  Google Scholar 

  • Gessa CE, Mimmo T, Deiana S, Marzadori C (2005) Effect of aluminium and pH on the mobility of phosphate through a soil-root interface model. Plant Soil 272:301–311. doi:10.1007/s11104-004-5693-z

    Article  CAS  Google Scholar 

  • Gimsing AL, Kirkegaard JA (2009) Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochem Rev 8:299–310. doi:10.1007/s11101-008-9105-5

    Article  CAS  Google Scholar 

  • Guibault GG (1984) Analytical uses of immobilized enzymes. Marcel Dekker, Inc. p. 97

  • Hochkoeppler A, Palmieri S (1992) Kinetic properties of myrosinase in hydrated reverse micelles. Biotech Progr 8:91–96. doi:10.1021/bp00014a001

    Article  CAS  Google Scholar 

  • ISO 9167-1 (1992) Rapeseed-determination of glucosinolates content-Part 1: method using gradient elution high-performance liquid chromatography

  • Lazzeri L, Tacconi R, Palmieri S (1993) In vitro activity of some glucosinolates and their reaction products toward a population of the nematode Heterodera schachti. J Agric Food Chem 41:825–829. doi:10.1021/jf00029a028

    Article  CAS  Google Scholar 

  • Lazzeri L, Leoni O, Manici LM (2004) Biocidal plant dried pellets for soil biofumigation. Ind Crops Prod 20:59–65. doi:10.1016/j.indcrop.2003.12.018

    Article  CAS  Google Scholar 

  • Lionetti V, Raiola A, Camardella L, Giovane A, Obel N, Pauly M, Favaron F, Cervone F, Bellincampi D (2007) Overexpression of pectin methylesterase inhibitors in arabidopsis restricts fungal infection by botrytis cinerea. Plant Physiol 143:1871–1880. doi:10.1104/pp.106.090803

    Article  CAS  PubMed  Google Scholar 

  • Manici LM, Lazzeri L, Palmieri S (1997) In vitro antifungal activity of glucosinolates and their enzyme derived products towards plant pathogenic fungi. J Agric Food Chem 45:2768–2773. doi:10.1021/jf9608635

    Article  CAS  Google Scholar 

  • Mari M, Iori R, Leoni O, Marchi A (1993) In vitro activity of glucosinolate-derived isothiocyanates against fruit postharvest pathogens. Ann Appl Biol 123:155–164. doi:10.1111/j.1744-7348.1993.tb04082.x

    Article  CAS  Google Scholar 

  • Marzadori C, Gessa C, Ciurli S (1998) Kinetic properties and stability of potato acid phosphatase immobilized on Ca-Polygalacturonate. Biol Fertil Soils 27:97–103

    Article  CAS  Google Scholar 

  • Matthiessen JN, Kirkegaard JA (2006) Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit Rev Plant Sci 25:235–265. doi:10.1080/07352680600611543

    Article  CAS  Google Scholar 

  • McCully ME, Miller C, Sprague SJ, Huang CX, Kirkegaard JA (2008) Distribution of glucosinolates and sulphur-rich cells in roots of field-grown canola (Brassica napus). New Phytol 180:193–205. doi:10.1111/j.1469-8137.2008.02520.x

    Article  CAS  PubMed  Google Scholar 

  • Messing RA (1976) Adsorption and inorganic bridge formations. In: Mosbach K (ed) Methods in enzymology, vol 44. Academic, New York, pp 148–168

    Google Scholar 

  • Mimmo T, Marzadori C, Francioso O, Deiana S, Gessa C (2003) Effects of aluminium sorption on a Ca-polygalacturonate network used as a soil-root interface model. Biopolimers 70:655–661. doi:10.1002/bip.10545

    Article  CAS  Google Scholar 

  • Mithen R (2001a) Glucosinolates—biochemistry, genetics and biological activity. Plant Growth Reg 34:91–103. doi:10.1023/A:1013330819778

    Article  CAS  Google Scholar 

  • Mithen RF (2001b) Glucosinolates and their degradation products. Adv Bot Res 35:213–262. doi:10.1016/S0065-2296(01)35008-5

    Article  CAS  Google Scholar 

  • Palmieri S, Iori R, Leoni O (1987) Comparison of methods for determining myrosinase activity. J Agric Food Chem 35:617–621. doi:10.1021/jf970316z

    Article  CAS  Google Scholar 

  • Pecháček R, Velišek J, Hrabcova H (1997) Decomposition products of allyl isothiocyanate in aqueous solutions. J Agric Food Chem 45:4584–4588. doi:10.1021/jf970316z

    Article  Google Scholar 

  • Pessina A, Thomas RM, Palmieri S, Luisi PL (1990) An improved method for the purification of myrosinase and its physicochemical characterization. Arch Biochem Bioph 280:383–389. doi:10.1016/0003-9861(90)90346-Z

    Article  CAS  Google Scholar 

  • Porath J, Axén R (1976) Immobilization of enzymes to agar, agarose, and sephadex support. In: Mosbach K (ed) Methods in enzymology, vol 44. Academic, New York, pp 19–45

    Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509. doi:10.1016/j.tplants.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  • Tookey HL, Van Etten CH, Daxenbichler ME (1980) In: Liener IE (ed) Toxic constituents of plant foodstuffs, 2nd edn. Academic, New York, pp 103–142

  • Visentin M, Tava A, Iori R, Palmieri S (1992) Isolation and identification of trans-4-(methylthio)-3-butenyl-glucosinolate from radish roots (Raphanus sativus L.). J Agric Food Chem 40:1687–1691. doi:10.1021/jf00021a041

    Article  CAS  Google Scholar 

  • Yang J, Yen HE (2002) Early salt stress effects on the changes in chemical composition in leaves of ice plant and arabidopsis. A Fourier transform infrared spectroscopy study. Plant Physiol 130:1032–1042. doi:10.1104/pp.004325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge Dr. Antonio E. Faleo for his laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Braschi.

Additional information

Responsible Editor: Harsh P. Bais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braschi, I., Leoni, O., Cinti, S. et al. Activity of myrosinase from Sinapis alba seeds immobilized into Ca-polygalacturonate as a simplified model of soil-root interface mucigel. Plant Soil 339, 209–218 (2011). https://doi.org/10.1007/s11104-010-0569-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0569-x

Keywords

Navigation