Skip to main content

Advertisement

Log in

Dynamics of alpine plant litter decomposition in a changing climate

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Climatic changes resulting from anthropogenic activities over the passed century are repeatedly reported to alter the functioning of pristine ecosystems worldwide, and especially those in cold biomes. Available literature on the process of plant leaf litter decomposition in the temperate Alpine zone is reviewed here, with emphasis on both direct and indirect effects of climate change phenomena on rates of litter decay. Weighing the impact of biotic and abiotic processes governing litter mass loss, it appears that an immediate intensification of decomposition rates due to temperature rise can be retarded by decreased soil moisture, insufficient snow cover insulation, and shrub expansion in the Alpine zone. This tentative conclusion, remains speculative unless empirically tested, but it has profound implications for understanding the biogeochemical cycling in the Alpine vegetation belt, and its potential role as a buffering mechanism to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Addington RN, Seastedt TR (1999) Activity of soil microarthropods beneath snowpack in Alpine tundra and subalpine forest. Pedobiologia 43:47–53

    Google Scholar 

  • Aerts R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. J Ecol 94:713–724. doi:10.1111/j.1365-2745.2006.01142.x

    Article  Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558

    Article  CAS  PubMed  Google Scholar 

  • Baptist F, Yoccoz N, Choler P (2009) Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. Plant Soil. doi:10.1007/s11104-009-0119-6

    Google Scholar 

  • Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268

    Article  Google Scholar 

  • Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30:1867–1878

    Article  CAS  Google Scholar 

  • Barry RG (1992) Mountain weather and climate. Routledge - Chapman and Hall, London, p 402

    Google Scholar 

  • Beniston M (1997) Variations of snow depth and duration in the Swiss Alps over the last 50 years: links to changes in large-scale climatic forcings. Clim Change 36:281–300

    Article  Google Scholar 

  • Beniston M (2009) Decadal-scale changes in the tails of probability distribution functions of climate variables in Switzerland. Int J Climatol 29:1362–1368. doi:10.1002/joc.1793

    Article  Google Scholar 

  • Beniston M, Rebetez M (1996) Regional behavior of minimum temperatures in Switzerland for the period 1979–1993. Theor Appl Climatol 53:231–243

    Article  Google Scholar 

  • Beniston M, Diaz HF, Bradley RS (1997) Climatic change at high elevation sites: an overview. Clim Change 36:233–251

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylha K, Koffi B, Palutikof J, Scholl R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95. doi:10.1007/s10584-006-9226-z

    Article  Google Scholar 

  • Björk RG, Molau U (2007) Ecology of alpine snowbeds and the impact of global change. Arct Antarct Alp Res 39:34–43

    Article  Google Scholar 

  • Björk RG, Björkman MP, Andersson MX, Klemedtsson L (2008) Temporal variation in soil microbial communities in Alpine tundra. Soil Biol Biochem 40:266–268. doi:10.1016/j.soilbio.2007.07.017

    Article  Google Scholar 

  • Bowman WD, Gartner JR, Holland K, Wiedermann M (2006) Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: are we there yet? Ecol Appl 16:1183–1193

    Article  PubMed  Google Scholar 

  • Brooks PD, Williams MW, Schmidt SK (1996) Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry 32:93–113

    Article  Google Scholar 

  • Brooks PD, McKnight D, Elder K (2005) Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Glob Chang Biol 11:231–238. doi:10.1111/j.1365-2486.2004.00877.x

    Article  Google Scholar 

  • Bryant DM, Holland EA, Seastedt TR, Walker MD (1998) Analysis of litter decomposition in an alpine tundra. Can J Bot-Revue Canadienne De Botanique 76:1295–1304

    Article  Google Scholar 

  • Cannone N, Sgorbati S, Guglielmin M (2007) Unexpected impacts of climate change on alpine vegetation. Front Ecol Environ 5:360–364

    Article  Google Scholar 

  • Chapin FS, Matson PA, Mooney HA (2002) Terrestrial decomposition in principles of terrestrial ecosystem ecology. In: FS Chapin III, PA Matson and HA Mooney (eds), Springer, New York, pp 151–175

  • Chapin FS, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CDC, Walker DA, Welker JM (2005) Role of land-surface changes in Arctic summer warming. Science 310:657–660. doi:10.1126/science.1117368

    Article  CAS  PubMed  Google Scholar 

  • Choler P (2005) Consistent shifts in Alpine plant traits along a mesotopographical gradient. Arct Antarct Alp Res 37:444–453

    Article  Google Scholar 

  • Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573–582

    Article  Google Scholar 

  • Cornelissen JHC, Perez-Harguindeguy N, Diaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Cerabolini B (1999) Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol 143:191–200

    Article  Google Scholar 

  • Cornelissen JHC, van Bodegom PM, Aerts R, Callaghan TV, van Logtestijn RSP, Alatalo J, Chapin FS, Gerdol R, Gudmundsson J, Gwynn-Jones D, Hartley AE, Hik DS, Hofgaard A, Jonsdottir IS, Karlsson S, Klein JA, Laundre J, Magnusson B, Michelsen A, Molau U, Onipchenko VG, Quested HM, Sandvik SM, Schmidt IK, Shaver GR, Solheim B, Soudzilovskaia NA, Stenstrom A, Tolvanen A, Totland O, Wada N, Welker JM, Zhao XQ (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–627

    Article  PubMed  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. doi:10.1111/j.1461-0248.2008.01219.x

    Article  PubMed  Google Scholar 

  • Diaz HF, Bradley RS (1997) Temperature variations during the last century at high elevation sites. Clim Change 36:253–279

    Article  Google Scholar 

  • Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Change 59:1–4

    Article  Google Scholar 

  • Diaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007) Plant trait responses to grazing - a global synthesis. Glob Chang Biol 13:313–341. doi:10.1111/j.1365-2486.2006.01288.x

    Article  Google Scholar 

  • Drewnik M (2006) The effect of environmental conditions on the decomposition rate of cellulose in mountain soils. Geoderma 132:116–130

    Article  CAS  Google Scholar 

  • Fahnestock JT, Povirk KL, Welker JM (2000) Ecological significance of litter redistribution by wind and snow in arctic landscapes. Ecography 23:623–631

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448–448

    Article  Google Scholar 

  • Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347

    Article  Google Scholar 

  • Grime JP, Cornelissen JHC, Thompson K, Hodgson JG (1996) Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos 77:489–494

    Article  Google Scholar 

  • Harte J, Shaw R (1995) Shifting dominance within montane vegetation community - results of a climate-warming experiment. Science 267:876–880

    Article  CAS  PubMed  Google Scholar 

  • Hättenschwiler S, Zumbrunn T (2006) Hemiparasite abundance in an alpine treeline ecotone increases in response to atmospheric CO2 enrichment. Oecologia 147:47–52. doi:10.1007/s00442-005-0255-5

    Article  PubMed  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition interrestrial ecosystems. Ann Rev Ecol Evol Syst 36:191–218. doi:10.1146/annurev.ecolsys.36.112904.151932

    Article  Google Scholar 

  • Hirschel G, Korner C, Arnone JA (1997) Will rising atmospheric CO2 affect leaf litter quality and in situ decomposition rates in native plant communities? Oecologia 110:387–392

    Article  Google Scholar 

  • Hobbie SE, Chapin FS (1996) Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry 35:327–338

    Article  Google Scholar 

  • Hodkinson ID, Wookey PA (1999) Functional ecology of soil organisms in tundra ecosystems: towards the future. Appl Soil Ecol 11:111–126

    Article  Google Scholar 

  • Hodkinson ID, Webb NR, Bale JS, Block W (1999) Hydrology, water availability and tundra ecosystem function in a changing climate: the need for a closer integration of ideas? Glob Chang Biol 5:359–369

    Article  Google Scholar 

  • Hoorens B, Coomes D, Aerts R (2010) Neighbour identity hardly affects litter-mixture effects on decomposition rates of New Zealand forest species. Oecologia 162:479–489. doi:10.1007/s00442-009-1454-2

    Article  PubMed  Google Scholar 

  • Huber E, Wanek W, Gottfried M, Pauli H, Schweiger P, Arndt SK, Reiter K, Richter A (2007) Shift in soil-plant nitrogen dynamics of an alpine-nival ecotone. Plant Soil 301:65–76

    Article  CAS  Google Scholar 

  • Inouye DW (2000) The ecological and evolutionary significance of frost in the context of climate change. Ecol Lett 3:457–463

    Article  Google Scholar 

  • Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362

    Article  PubMed  Google Scholar 

  • IPCC (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland

  • Jonsson M, Wardle DA (2008) Context dependency of litter-mixing effects on decomposition and nutrient release across a long-term chronosequence. Oikos 117:1674–1682. doi:10.1111/j.1600-0706.2008.16810.x

    Article  Google Scholar 

  • Kato T, Hirota M, Tang YH, Cui XY, Li YN, Zhao XQ, Oikawa T (2005) Strong temperature dependence and no moss photosynthesis in winter CO2 flux for a Kobresia meadow on the Qinghai-Tibetan plateau. Soil Biol Biochem 37:1966–1969. doi:10.1016/j.soilbio.2005.02.018

    Article  CAS  Google Scholar 

  • Körner C (1989) The nutritional status of plants from high altitudes. A worldwide comparison. Oecologia 81:379–391

    Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Google Scholar 

  • Kudo G (1996) Intraspecific variation of leaf traits in several deciduous species in relation to length of growing season. Ecoscience 3:483–489

    Google Scholar 

  • Ley RE, Williams MW, Schmidt SK (2004) Microbial population dynamics in an extreme environment: controlling factors in talus soils at 3750 m in the Colorado Rocky Mountains. Biogeochemistry 68:313–335

    Article  CAS  Google Scholar 

  • Lipson DA, Monson RK (1998) Plant-microbe competition for soil amino acids in the alpine tundra: effects of freeze-thaw and dry-rewet events. Oecologia 113:406–414

    Article  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (2000) Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass. Soil Biol Biochem 32:441–448

    Article  CAS  Google Scholar 

  • Liu XD, Cheng ZG, Yan LB, Yin ZY (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob Planet Change 68:164–174. doi:10.1016/j.gloplacha.2009.03.017

    Article  Google Scholar 

  • Martin M, Gavazov K, Körner C, Hättenschwiler S, Rixen C (2010) Reduced early growing season freezing resistance in alpine treeline plants under elevated atmospheric CO2. Glob Chang Biol 16:1057–1070. doi:10.1111/j.1365-2486.2009.01987.x

    Article  Google Scholar 

  • Matzner E, Borken W (2008) Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. Eur J Soil Sci 59:274–284. doi:10.1111/j.1365-2389.2007.00992.x

    Article  Google Scholar 

  • Mikan CJ, Schimel JP, Doyle AP (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biochem 34:1785–1795

    Article  CAS  Google Scholar 

  • Nogues-Bravo D, Araujo MB, Errea MP, Martinez-Rica JP (2007) Exposure of global mountain systems to climate warming during the 21st Century. Global Environmental Change-Human and Policy Dimensions 17:420–428. doi:10.1016/j.gloenvcha.2006.11.007

    Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165

    Article  Google Scholar 

  • OECD (2007) Climate Change in the European Alps: adapting winter tourism and natural hazards management. OECD Publishing, Paris, p 136

    Google Scholar 

  • Olear HA, Seastedt TR (1994) Landscape patterns of litter decomposition in Alpine tundra. Oecologia 99:95–101

    Article  Google Scholar 

  • Olofsson J, Oksanen L (2002) Role of litter decomposition for the increased primary production in areas heavily grazed by reindeer: a litterbag experiment. Oikos 96:507–515

    Article  Google Scholar 

  • Olofsson J, Stark S, Oksanen L (2004) Reindeer influence on ecosystem processes in the tundra. Oikos 105:386–396

    Article  CAS  Google Scholar 

  • Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR (2006) Microbial activity in soils frozen to below −39°C. Soil Biol Biochem 38:785–794. doi:10.1016/j.soilbio.2005.07.004

    Article  CAS  Google Scholar 

  • Parry ML (2000) Assessment of potential effects and adaptations for climate change in Europe: the Europe ACACIA project. Jackson Environmental Institute, University of East Anglia, Norwich, pp 261–279

    Google Scholar 

  • Quested HM, Callaghan TV, Cornelissen JHC, Press MC (2005) The impact of hemiparasitic plant litter on decomposition: direct, seasonal and litter mixing effects. J Ecol 93:87–98. doi:10.1111/j.1365-2745.2004.00951.x

    Article  CAS  Google Scholar 

  • Quested H, Eriksson O, Fortunel C, Garnier E (2007) Plant traits relate to whole-community litter quality and decomposition following land use change. Funct Ecol 21:1016–1026. doi:10.1111/j.1365-2435.2007.01324.x

    Article  Google Scholar 

  • Sanz-Elorza M, Dana ED, Gonzalez A, Sobrino E (2003) Changes in the high-mountain vegetation of the central Iberian peninsula as a probable sign of global warming. Ann Bot 92:273–280

    Article  PubMed  Google Scholar 

  • Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361

    Article  CAS  PubMed  Google Scholar 

  • Schinner F (1982) Soil microbial activities and litter decomposition related to altitude. Plant Soil 65:87–94

    Article  Google Scholar 

  • Schmidt SK, Lipson DA (2004) Microbial growth under the snow: implications for nutrient and allelochemical availability in temperate soils. Plant Soil 259:1–7

    Article  CAS  Google Scholar 

  • Schob C, Kammer PM, Choler P, Veit H (2009) Small-scale plant species distribution in snowbeds and its sensitivity to climate change. Plant Ecol 200:91–104. doi:10.1007/s11258-008-9435-9

    Article  Google Scholar 

  • Schutz M, Risch AC, Leuzinger E, Krusi BO, Achermann G (2003) Impact of herbivory by red deer (Cervus elaphus L.) on patterns and processes in subalpine grasslands in the Swiss National Park. For Ecol Manag 181:177–188. doi:10.1016/s0378-1127(03)00131-2

    Article  Google Scholar 

  • Seastedt TR, Walker MD, Bryant DM (2001) Controls on decomposition processes in alpine tundra. In: Bowman WD, Seastedt TR (eds) Structure and function of an alpine ecosystem: Niwot Ridge, Colorado. Oxford University Press, New York, pp 222–235

    Google Scholar 

  • Seeber J, Scheu S, Meyer E (2006) Effects of macro-decomposers on litter decomposition and soil properties in alpine pastureland: a mesocosm experiment. Appl Soil Ecol 34:168–175

    Article  Google Scholar 

  • Semenov Y, Ramousse R, Le Berre M, Tutukarov Y (2001) Impact of the black-capped marmot (Marmota camtschatica bungei) on floristic diversity of arctic tundra in Northern Siberia. Arct Antarct Alp Res 33:204–210

    Article  Google Scholar 

  • Seneviratne SI, Luthi D, Litschi M, Schar C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209. doi:10.1038/nature05095

    Article  CAS  PubMed  Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207

    Article  Google Scholar 

  • Shaver GR, Canadell J, Chapin FS, Gurevitch J, Harte J, Henry G, Ineson P, Jonasson S, Melillo J, Pitelka L, Rustad L (2000) Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience 50:871–882

    Article  Google Scholar 

  • Shaw MR, Harte J (2001) Control of litter decomposition in a subalpine meadow-sagebrush steppe ecotone under climate change. Ecol Appl 11:1206–1223

    Google Scholar 

  • Sjögersten S, Wookey PA (2004) Decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions. Plant Soil 262:215–227

    Article  Google Scholar 

  • Sjursen HS, Michelsen A, Holmstrup M (2005) Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil. Appl Soil Ecol 28:79–93

    Article  Google Scholar 

  • Soudzilovskaia NA, Onipchenko VG, Cornelissen JHC, Aerts R (2007) Effects of fertilisation and irrigation on ‘foliar afterlife’ in alpine tundra. J Veg Sci 18:755–766

    Article  Google Scholar 

  • Steltzer H, Bowman WD (2005) Litter N retention over winter for a low and a high phenolic species in the alpine tundra. Plant Soil 275:361–370

    Article  CAS  Google Scholar 

  • Sturm M, Douglas T, Racine C, Liston GE (2005) Changing snow and shrub conditions affect albedo with global implications. J Geophys Res-Biogeosci 110. doi:G01004Artng01004

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, Oxford

    Google Scholar 

  • Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109

    Article  CAS  Google Scholar 

  • Uhlmann B, Goyette S, Beniston M (2009) Sensitivity analysis of snow patterns in Swiss ski resorts to shifts in temperature, precipitation and humidity under conditions of climate change. Int J Climatol 29:1048–1055. doi:10.1002/joc.1786

    Article  Google Scholar 

  • Walker MD, Walker DA, Welker JM, Arft AM, Bardsley T, Brooks PD, Fahnestock JT, Jones MH, Losleben M, Parsons AN, Seastedt TR, Turner PL (1999) Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra. Hydrol Process 13:2315–2330

    Article  Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jonsdottir IS, Klein JA, Magnusson B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland O, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–1346. doi:10.1073/pnas.0503198103

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press

  • Wilson SD, Nilsson C (2009) Arctic alpine vegetation change over 20 years. Glob Chang Biol 15:1676–1684. doi:10.1111/j.1365-2486.2009.01896.x

    Article  Google Scholar 

  • Withington CL, Sanford RL (2007) Decomposition rates of buried substrates increase with altitude in the forest-alpine tundra ecotone. Soil Biol Biochem 39:68–75

    Article  CAS  Google Scholar 

  • Wookey PA, Aerts R, Bardgett RD, Baptist F, Brathen KA, Cornelissen JHC, Gough L, Hartley IP, Hopkins DW, Lavorel S, Shaver GR (2009) Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob Chang Biol 15:1153–1172. doi:10.1111/j.1365-2486.2008.01801.x

    Article  Google Scholar 

  • Zhang YQ, Welker JM (1996) Tibetan alpine tundra responses to simulated changes in climate: Aboveground biomass and community responses. Arct Alpine Res 28:203–209

    Article  Google Scholar 

Download references

Acknowledgements

I express my deepest gratitude to Dr. J.H.C. Cornelissen who assisted me in compiling this comprehensive list of literature on Alpine biogeochemistry. His enthusiasm about the work and his critical comments are heartily praised. The two anonymous referees enriched the manuscript even further with proposed topics from their specific fields of expertise. This project was partly funded through CCES (Competence Center Environment and Sustainability of the ETH Domain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin S. Gavazov.

Additional information

Responsible Editor: Gerlinde De Deyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavazov, K.S. Dynamics of alpine plant litter decomposition in a changing climate. Plant Soil 337, 19–32 (2010). https://doi.org/10.1007/s11104-010-0477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0477-0

Keywords

Navigation