Skip to main content
Log in

Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Greenhouse and field experiments were carried out in order to investigate the influence of mycorrhizal inoculation on total phenolic content (TPC) and antioxidant activity, expressed as antiradical power (ARP), of artichoke (Cynara cardunculus L. var. scolymus F.) leaves and flower heads extracts. The establishment of mycorrhizal symbiosis was monitored in pot and field grown plants, and the persistence of the inoculated AMF in roots after 2 years’ growth in the field was assessed by fungal ITS sequencing. Both in the greenhouse and in the field, marked increases in TPC and ARP were detected in leaves and flower heads of artichoke plants inoculated with the AM fungal species Glomus intraradices, either alone or in mixture with Glomus mosseae. In the field, plants inoculated with Glomus mix showed flower heads ARP content increases of 52.7 and 30.0% in the first and second year, respectively, compared with uninoculated plants. After 2 years’ growth in the field ITS rDNA sequences clustering with those of G. mosseae and G. intraradices were retrieved only from inoculated plant roots. Our data show that mycorrhizal inoculation may represent an efficient and sustainable strategy to improve productivity and enhance plant biosynthesis of secondary metabolites with health promoting activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alkan N, Gadkar V, Yarden O, Kapulnik Y (2006) Analysis of quantitative interactions between two species of arbuscular mycorrhizal fungi, Glomus mosseae and G. intraradices, by real-time PCR. Appl Environ Microbiol 72:4192–4199

    Article  CAS  PubMed  Google Scholar 

  • Allen MF, Moore TS Jr, Christensen M (1982) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60:468–471

    Article  CAS  Google Scholar 

  • Apple ME, Thee CI, Smith-Longozo VL, Cogar CR, Wells CE, Nowak RS (2005) Arbuscular mycorrhizal colonization of Larrea tridentata and Ambrosia dumosa roots varies with precipitation and season in the Mojave Desert. Symbiosis 39:131–135

    Google Scholar 

  • Araim G, Saleem A, Arnason JT, Charest C (2009) Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. J Agr Food Chem 57:2255–2258

    Article  CAS  Google Scholar 

  • Bauer CR, Kellogg CH, Bridgham SD, Lamberti GA (2003) Mycorrhizal colonization across hydrologic gradients in restored and reference freshwater wetlands. Wetlands 23:961–968

    Article  Google Scholar 

  • Blilou I, Ocampo JA, Garcia GJ (2000) Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. J Exp Bot 51:1969–1977

    Article  CAS  PubMed  Google Scholar 

  • Boddington CL, Dodd JC (2000) The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. II. Studies in experimental microcosms. Plant Soil 218:145–157

    Article  CAS  Google Scholar 

  • Bonanomi A, Oetiker JH, Guggenheim R, Boller T, Wiemken A, Vogeli LR (2001) Arbuscular mycorrhiza in mini-mycorrhizotrons: first contact of Medicago truncatula roots with Glomus intraradices induces chalcone synthase. New Phytol 150:573–582

    Article  CAS  Google Scholar 

  • Bondet V, Brand-Williams W, Berset C (1997) Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. Lebensm Wiss Technol 30:609–615

    Article  CAS  Google Scholar 

  • Börstler B, Renker C, Kahmen A, Buscot F (2006) Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biol Fert Soil 42:286–298

    Article  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30

    CAS  Google Scholar 

  • Brown JE, Rice-Evans CA (1998) Luteolin-rich artichoke extracts protect low density lipoprotein from oxidation in vitro. Free Radical Res 29:247–255

    Article  CAS  Google Scholar 

  • Bundy R, Walker AF, Middleton RW, Wallis C, Simpson HCR (2008) Artichoke leaf extract (Cynara scolymus L.) reduces plasma cholesterol in otherwise healthy hypocholesterolemic adults: a randomized, double blind placebo controlled trial. Phytomedicine 15:668–675

    Article  PubMed  Google Scholar 

  • Comino C, Lanteri S, Portis E, Acquadro A, Romani A, Hehn A, Larbat R, Bourgaud F (2007) Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L. BMC Plant Biol 7:14

    Article  PubMed  Google Scholar 

  • Comino C, Hehn A, Moglia A, Menin B, Bourgaud F, Lanteri S, Portis E (2009) The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway. BMC Plant Biol 9:30

    Article  PubMed  Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494

    Article  CAS  PubMed  Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phytophthora nicotianae var parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232

    Article  CAS  Google Scholar 

  • Curadi M, Picciarelli P, Lorenzi R, Graifenberg A, Ceccarelli N (2005) Antioxidant activity and phenolic compounds in the edible parts of early and late Italian artichoke (Cynara scolymus L.) varieties. Ital J Food Sci 17:33–43

    CAS  Google Scholar 

  • Daft MJ (1983) The influence of mixed inocula on endomycorrhizal development. Plant Soil 71:331–337

    Article  Google Scholar 

  • Daft MJ, Hogarth BG (1983) Competitive interactions amongst four species of Glomus on maize and onion. T Br Mycol Soc 80:339–345

    Article  Google Scholar 

  • Danneberg G, Latus C, Zimmer W, Hundeshagen B, Schneider-Poetsch H, Bothe H (1992) Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). J Plant Physiol 141:33–39

    Google Scholar 

  • Devi MC, Reddy MN (2002) Phenolic acid metabolism of groundnut (Arachis hypogaea L.) plants inoculated with VAM fungus and Rhizobium. Plant Growth Regul 37:151–156

    Article  Google Scholar 

  • Drüge U, Schönbeck F (1993) Effect of vesicular-arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissimum L.) in relation to cytokinin levels. J Plant Physiol 141:40–48

    Google Scholar 

  • FAOSTAT (2007) http://faostat.fao.org/

  • Fester T, Hause G (2005) Accumulation of reactive oxigen species in arbuscular mycorrhyzal roots. Mycorrhiza 15:373–379

    Article  CAS  PubMed  Google Scholar 

  • Fester T, Maier W, Strack D (1999) Accumulation of secondary compounds in barley and wheat roots in response to inoculation with an arbuscular mycorrhizal fungus and co-inoculation with rhizosphere bacteria. Mycorrhiza 8:241–246

    Article  CAS  Google Scholar 

  • Fester T, Strack D, Hause G (2001) Reorganization of tobacco root plastids during arbuscule developement. Planta 213:864–868

    Article  CAS  PubMed  Google Scholar 

  • Fester T, Wray V, Nimtz M, Strack D (2005) Is stimulation of carotenoid biosynthesis in arbuscular mycorrhizal roots a general phenomenon? Phytochemistry 66:1781–1786

    Article  CAS  PubMed  Google Scholar 

  • Gai JP, Feng G, Christie P, Li XL (2006) Screening of arbuscular mycorrhizal fungi for symbiotic efficiency with sweet potato. J Plant Nutr 29:1085–1094

    Article  CAS  Google Scholar 

  • Galvan GA, Paradi I, Burger K, Baar J, Kuyper TW, Scholten OE, Kik C (2009) Molecular diversity of arbuscular mycorrhizal fungi in onion roots from organic and conventional farming systems in the Netherlands. Mycorrhiza 19:317–328

    Article  PubMed  Google Scholar 

  • Gebhardt R (1997) Antioxidative and protective properties of extracts from leaves of the artichoke (Cynara scolymus L.) against hydroperoxide-induced oxidative stress in cultured hepatocytes. Toxicol Appl Pharm 144:279–286

    Article  CAS  Google Scholar 

  • Giovannetti M, Avio L (2002) Biotechnology of arbuscular mycorrhizas. In: Khachatourians GG, Arora Dilip K (eds) Applied mycology and biotechnology, volume 2, agriculture and food production. Elsevier, Amsterdam, pp 275–310

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vescicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Hans J, Hause B, Strack D, Walter MH (2004) Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-D-xylulose-5-phosphate reductoisomerase in arbuscule-containing cells of maize. Plant Physiol 134:614–624

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant Microbe In 6:643–654

    CAS  Google Scholar 

  • Hempel S, Renker C, Buscot F (2007) Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ Microbiol 9:1930–1938

    Article  CAS  PubMed  Google Scholar 

  • Herre EA, Mejia LC, Kyllo DA, Rojas E, Maynard Z, Butler A, Van Bael SA (2007) Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 88:550–558

    Article  PubMed  Google Scholar 

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    Article  CAS  PubMed  Google Scholar 

  • Khan IA, Ayub N, Mirza SN, Nizami SM, Azam M (2008) Synergistic effect of dual inoculation (Vesicular-Arbuscular Mycorrhizae) on the growth and nutrients uptake of Medicago sativa. Pakistan J Bot 40:939–945

    Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Koide RT (2000) Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytol 147:233–235

    Article  Google Scholar 

  • Kraft K (1997) Artichoke leaf extracts—recent findings reflecting effects on lipid metabolism. Liver and gastrointestinal tracts. Phytomedicine 4:369–378

    CAS  Google Scholar 

  • Kumar A, Raghuwanshi R, Upadhyay RS (2003) Vesicular-arbuscular mycorrhizal association in naturally revegetated coal mine spoil. Trop Ecol 44:253–256

    Google Scholar 

  • Lambais MR, Rios-Ruiz WF, Andrade RM (2003) Antioxidant responses in bean (Phaseolus vulgaris) roots colonized by arbuscular mycorrhizal fungi. New Phytol 160:421–428

    Article  CAS  Google Scholar 

  • Landwehr M, Hildebrandt U, Wilde P, Nawrath K, Toth T, Biro B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211

    Article  CAS  PubMed  Google Scholar 

  • Larose G, Chenevert R, Moutoglis P, Gagne S, Piche Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339

    Article  CAS  Google Scholar 

  • Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105

    Article  Google Scholar 

  • Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T (2005) Organisation and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiol 139:329–340

    Article  CAS  PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  CAS  PubMed  Google Scholar 

  • Maier W, Schmidt J, Wray V, Walter MH, Strack D (1999) The arbuscular mycorrhizal fungus, Glomus intraradices, induces the accumulation of cyclohexenone derivatives in tobacco roots. Planta 207:620–623

    Article  CAS  Google Scholar 

  • Marin M, Ybarra M, Garcia-Ferriz F, Garcia-Ferriz L (2002) Effect of arbuscular mycorrhizal fungi and pesticides on Cynara cardunculus growth. Agr Food Sci Finland 11:245–251

    CAS  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcon R (2007) Drought tolerance and antioxidant activities in lavander plants colonized by native drought-tolerant of drught-sensitive Glomus species. Microb Ecol 54:543–552

    Article  CAS  PubMed  Google Scholar 

  • Medina MJH, Gagnon H, Pichq Y, Ocampo JA, Garrido JMG, Vierheilig H (2003) Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci 164:993–998

    Article  Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds on endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251

    Article  CAS  Google Scholar 

  • Munkvold L, Kjoller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  Google Scholar 

  • Niggeweg R, Michael A, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnol 22:746–754

    Article  CAS  Google Scholar 

  • Pawlowska TE, Blaszkowski B, Rühling Å (1997) The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6:499–505

    Article  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pringle A, Bever JD (2002) Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. Am J Bot 89:1439–1446

    Article  Google Scholar 

  • Rabie GH (1998) Induction of fungal disease resistance in Vicia faba by dual inoculation with Rhizobium leguminosarum and vesicular-arbuscular mycorrhizal fungi. Mycopathologia 141:159–166

    Article  CAS  PubMed  Google Scholar 

  • Redecker D, Hijri M, Dulieu H, Sanders IR (1999) Phylogenetic analysis of a dataset of fungal 5.8S rDNA sequences shows that highly divergent copies of internal transcribed spacers reported from Scutellospora castanea are of ascomycete origin. Fung Genet Biol 28:238–244

    Article  CAS  Google Scholar 

  • Renker C, Heinrichs J, Kaldorf M, Buscot F (2003) Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field. Mycorrhiza 13:191–198

    Article  CAS  PubMed  Google Scholar 

  • Renker C, Blanke V, Buscot F (2005) Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant. Environ Pollut 135:255–266

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Palma JM (1996) Superoxide dismutase activity in arbuscular mycorrizal Lactuca sativa plants subjected to drought stress. New Phytol 134:327–333

    Article  CAS  Google Scholar 

  • Sanders IR (2004) Intraspecific genetic variation in arbuscular mycorrhizal fungi and its consequences for molecular biology, ecology, and development of inoculum. Can J Bot 82:1057–1062

    Article  CAS  Google Scholar 

  • Sawa T, Nakao M, Akaike T, Ono K, Maeda H (1999) Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: implications for the anti-tumor-promoter effect of vegetables. J Agr Food Chem 47:397–402

    Article  CAS  Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolic profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146

    Article  CAS  PubMed  Google Scholar 

  • Shadidi F, Naczk M (1995) Methods of analysis and quantification of phenolic compounds. In: Shahidi F, Naczk M (eds) Food phenolics: sources. Chemistry, effects and applications. Technomic, Lancaster, pp 287–293

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, Cambridge, pp 1–787

    Book  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Strack D, Fester T, Hause B, Schliemann W, Walter M (2003) Arbuscular mycorrhiza: biological, chemical, and molecular aspects. J Chem Ecol 29:1955–1979

    Article  CAS  PubMed  Google Scholar 

  • Sykorova Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14

    Article  CAS  PubMed  Google Scholar 

  • Toussaint JP (2007) Investigating physiological changes in the aerial parts of AM plants. What do we know and where should we be heading. Mycorrhiza 17:349–353

    Article  PubMed  Google Scholar 

  • Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297

    Article  CAS  PubMed  Google Scholar 

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    Article  PubMed  Google Scholar 

  • Walter MH, Fester T, Strack D (2000) Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythriol phoshate pathway of isoprenoid biosynthesis correlated with accumulation of the “yellow pigment” and other apocarotenoids. Plant J 21:571–578

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Simon LE, Aviles IF, He K, Zheng Q, Tadmor Y (2003) Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J Agr Food Chem 51:601–608

    Article  CAS  Google Scholar 

  • Wright DP, Scholes JD, Read DJ (1998) Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ 21:209–216

    Article  Google Scholar 

  • Zhu HH, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol 152:537–542

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Ministero Italiano Università e Ricerca, PRIN project “ New methods for high quality artichoke production” N° 2005078347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Giovannetti.

Additional information

Responsible Editor: Angela Hodge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceccarelli, N., Curadi, M., Martelloni, L. et al. Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335, 311–323 (2010). https://doi.org/10.1007/s11104-010-0417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0417-z

Keywords

Navigation