Skip to main content
Log in

Proteome analysis of soybean roots subjected to short-term drought stress

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Drought is one of the most important constraints on the growth and productivity of many crops, including soybeans. However, as a primary sensing organ, the plant root response to drought has not been well documented at the proteomic level. In the present study, we carried out a proteome analysis in combination with physiological analyses of soybean roots subjected to severe but recoverable drought stress at the seedling stage. Drought stress resulted in the increased accumulation of reactive oxygen species and subsequent lipid peroxidation. The proline content increased in drought-stressed plants and then decreased during the period of recovery. The high-resolution proteome map demonstrated significant variations in about 45 protein spots detected on Comassie briliant blue-stained 2-DE gels. Of these, 28 proteins were identified by mass spectrometry; the levels of 5 protein spots were increased, 21 were decreased and 2 spots were newly detected under drought condition. When the stress was terminated by watering the plants for 4 days, in most cases, the protein levels tended towards the control level. The proteins identified in this study are involved in a variety of cellular functions, including carbohydrate and nitrogen metabolism, cell wall modification, signal transduction, cell defense and programmed cell death, and they contribute to the molecular mechanism of drought tolerance in soybean plants. Analysis of protein expression patterns revealed that proteins associated with osmotic adjustment, defense signaling and programmed cell death play important roles for soybean plant drought adaptation. The identification of these proteins provides new insight that may lead to a better understanding of the molecular basis of the drought stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional gel electrophoresis

MALDI-TOF:

Matrix-assisted laser desorption ionization time-of-flight

PMF:

Peptide mass fingerprinting

ROS:

Reactive oxygen species

SDS-PAGE:

Sodium dodecylsulfate polyacrylamide gel electrophoresis

TBARS:

Thiobarbituric acid reactive substance

References

  • Abebe T, Melmaiee K, Berg V, Wise RP (2009) Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed. Funct Integr Genomics. doi:10.1007/s10142-009-0149-4

    PubMed  Google Scholar 

  • Babiychuk E, Kushnir S, Belles-Boix E, Van Montagu M, Inze D (1995) Arabidopsis thaliana NADPH oxidoreductase homologs confer tolerance of yeasts towards the thiol-oxidizing drug diamide. J Biol Chem 270:26224–26231

    Article  PubMed  CAS  Google Scholar 

  • Bajji M, Lutts S, Kinet J (2001) Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Sci 160:669–681

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Furini A, Ingram J, Salamini F (1996) Response of plants to dehydration stress: a molecular analysis. Plant Growth Regul 20:111–118

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Cheeseman JM (2007) Hydrogen peroxide and plant stress: a challenging relationship. Plant Stress 1:4–15

    Google Scholar 

  • Chini A, Grant JJ, Seki M, Shinozaki K, Loake GJ (2004) Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J 38:810–822

    Article  PubMed  CAS  Google Scholar 

  • Eastmond PJ (2004) Glycerol-insensitive Arabidopsis mutants: gli1 seedlings lack glycerol kinase, accumulate glycerol and are more resistant to abiotic stress. Plant J 37:617–625

    Article  PubMed  CAS  Google Scholar 

  • Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann PM (2006) Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol 140:603–612

    Article  PubMed  Google Scholar 

  • Field HI, Fenyo D, Beavis RC (2002) RADARS, a bioinformatics solution that automates proteome mass spectral analysis, optimizes protein identification, and archives data in a relational database. Proteomics 2:36–47

    Article  PubMed  CAS  Google Scholar 

  • Gould KS, McKelvie J, Markham KR (2002) Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ 25:1261–1269

    Article  CAS  Google Scholar 

  • Guo S, Wharton W, Moseley P, Shi H (2007) Heat shock protein 70 regulates cellular redox status by modulating glutathione related enzyme activities. Cell Stress Chaperones 12:245–254

    Article  PubMed  CAS  Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Salekdeh GH (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5:950–960

    Article  PubMed  CAS  Google Scholar 

  • Harrison PM, Hempstead PD, Artymiuk PJ, Andrews SC (1998) Iron transport and storage in microorganisms, plants, and animals. Metal Ions Biol Syst 35:435–476

    CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hernández I, Alegre L, van Breusegem F, Munné-Bosch S (2009) How relevant are flavonoids as antioxidants in plants. Trends Plant Sci 14:125–132

    Article  PubMed  CAS  Google Scholar 

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two dimensional gel electrophoresis. Plant Physiol 81:802–806

    Article  PubMed  CAS  Google Scholar 

  • Jao DLE, Chen KY (2006) Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. J Cell Biochem 97:583–598

    Article  PubMed  CAS  Google Scholar 

  • Jones DA, Takemoto D (2004) Plant innate immunity - direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol 16:48–62

    Article  PubMed  CAS  Google Scholar 

  • Kosola KR, Eissenstat DM (1994) The fate of surface roots of citrus seedlings in dry soil. J Exp Bot 45:1639–1645

    Article  CAS  Google Scholar 

  • la Cour PM, Hejgaard J, Thompson GA, Schulz A (2005) Cucurbit phloem serpins are graft-transmissible and appear to be resistant to turnover in the sieve element-companion cell complex. J Exp Bot 56:3111–3120

    Article  CAS  Google Scholar 

  • Lee D-G, Ahsan N, Lee S-H, Kang KY, Lee J-J, Bahk JD, Lee B-H (2009) Chilling stress-induced proteomic changes in rice roots. J Plant Physiol 166:1–11

    Article  PubMed  CAS  Google Scholar 

  • Lee YRJ, Liu B (2004) Cytoskeletal motors in Arabidopsis sixty-one kinesins and seventeen myosins. Plant Physiol 136:3877–3883

    Article  PubMed  CAS  Google Scholar 

  • Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2 containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA 103:18008–18013

    Article  PubMed  CAS  Google Scholar 

  • Li A-L, Li H-Y, Jin B-F, Ye Q-N, Zhou T, Yu X-D, Pan X, Man J-H, He K, Yu M, Hu M-R, Wang J, Yang S-C, Shen B-F, Zhang X-MA (2004) Novel eIF5A complex functions as a regulator of p53 and p53-dependent apoptosis. J Biol Chem 279:49251–49258

    Article  PubMed  CAS  Google Scholar 

  • Lin CC, Kao CH (2001) Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci 160:323–329

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mattioni C, Lacerenze NG, Troccoli A, DeLeonardis AM, DiFonzo N (1997) Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings. Physiol Plant 101:787–792

    Article  CAS  Google Scholar 

  • Mowla SB, Cuypers A, Driscoll SP et al (2006) Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance. Plant J 48:743–756

    Article  PubMed  CAS  Google Scholar 

  • Ori N, Juarez MT, Jackson D, Yamaguchi J, Banowetz GM, Hake S (1999) Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene knotted 1 under the control of a senescence-activated promoter. Plant Cell 11:1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Osmond CB, Grace SC (1995) Perspectives on photo inhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? J Exp Bot 46:1351–1362

    CAS  Google Scholar 

  • Percipalle P, Visa N (2006) Molecular functions of nuclear actin in transcription. J Cell Biol 172:967–971

    Article  PubMed  CAS  Google Scholar 

  • Price AH, Hendry GAF (1991) Iron-catalysed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant Cell Environ 14:477–484

    Article  CAS  Google Scholar 

  • Ravet K, Touraine B, Boucherez J, Briat J-F, Gaymard F, Cellier F (2009) Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J 57:400–412

    Article  PubMed  CAS  Google Scholar 

  • Reggiani R, Nebuloni M, Mattana M, Brambilla I (2000) Anaerobic accumulation of amino acids in rice roots: role of the glutamine synthetase/glutamate synthase cycle. Amino Acids 18:207–217

    Article  PubMed  CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    Article  PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Raikhel NV (1999) The specificity of vesicle trafficking: coat proteins and SNAREs. Plant Cell 11:629–642

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2005) RNA immune precipitation and microarray analysis show a chloroplast pentatricopeptide repeat protein to be associated with the 5′ region of mRNAs whose translation it activates. Plant Cell 17:2791–2804

    Article  PubMed  CAS  Google Scholar 

  • Schurr U, Heckenberger U, Herdel K, Walter A, Feil R (2000) Leaf development in Ricinus communis during drought stress: dynamics of growth processes, of cellular structure and of sink-source transition. J Exp Bot 51:1515–1529

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Winz R, Iwase T, Nakajima K, Yamada Y, Hashimoto T (2002) Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondary metabolism in tobacco. Plant Mol Biol 50:427–440

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219

    Article  PubMed  CAS  Google Scholar 

  • Smith HMS, Boschke I, Hake S (2002) Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proc Natl Acad Sci USA 99:9579–9584

    Article  PubMed  CAS  Google Scholar 

  • Stacey G, Dorrance A, Nguyen H, Pantalone V, Parrott W, Shoemaker R, Sleper D (2006) SoyCAP: Roadmap for Soybean Translational Genomics. Soybean genetics newsletter vol 33, URL: http://www.soygenetics.org/previewIssue.php?issueID =27&archive=1%22

  • Street NR, Skogström O, Sjödin A, Tucker J, Rodríguez-Acosta M, Nilsson P, Jansson S, Taylor G (2006) The genetics and genomics of drought response in Populus. Plant J 48:321–341

    Article  PubMed  CAS  Google Scholar 

  • Thompson JE, Hopkins MT, Taylor C, Wang T-W (2004) Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Sci 9:174–179

    Article  PubMed  CAS  Google Scholar 

  • Toorchi M, Yukawa K, Nouri MZ, Komatsu S (2009) Proteomics approach for identifying osmotic-stress-related proteins in soybean roots. Peptides 30:2108–2117

    Article  PubMed  CAS  Google Scholar 

  • Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M (2005) Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. Plant Physiol 137:949–960

    Article  PubMed  CAS  Google Scholar 

  • Wang TW, Zhang CG, Wu W, Nowack LM, Madey E, Thompson JE (2005) Antisense suppression of deoxyhypusine synthase in tomato delays fruit softening and alters growth and development. Plant Physiol 138:1372–1382

    Article  PubMed  CAS  Google Scholar 

  • Wang X, He X, Lin J, Shao H, Chang Z, Dixon RA (2006) Crystal structure of isoflavone reductase from Alfalfa (Medicago sativa L.). J Mol Biol 358:1341–1352

    Article  PubMed  CAS  Google Scholar 

  • Warpeha KM, Gibbons J, Carol A, Slusser J, Tree R, Durham W, Kaufman LS (2008) Presence of adequate phenylalanine mediated by G-protein is critical for protection from UV radiation damage in young etiolated Arabidopsis thaliana seedlings. Plant Cell Environ 31:1756–1770

    Article  PubMed  CAS  Google Scholar 

  • Wolkers WF, Tetteroo FAA, Alberda M, Hoekstra FA (1999) Changed properties of the cytoplasmic matrix associated with desiccation tolerance of dried carrot somatic embryos. An in situ Fourier transform infrared spectroscopic study. Plant Physiol 120:153–163

    Article  PubMed  CAS  Google Scholar 

  • Wu YJ, Cosgrove DJ (2000) Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J Exp Bot 51:1543–1553

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Wang R-G, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074

    Article  PubMed  CAS  Google Scholar 

  • Yan LJ, Christians ES, Liu L, Xiao X, Sohal RS, Benjamin IJ (2002) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21:5164–5172

    Article  PubMed  CAS  Google Scholar 

  • Yang PH, GQ LI, Guo L, Wu SJ (2003) Effect of drought stress on plasma membrane permeability of soybean varieties during flowering-poding stage. Agric Res Arid Areas 21:127–130

    Google Scholar 

  • Yoo BC, Aoki K, Xiang Y, Campbell LR, Hull RJ, Xoconostle-Cazares B, Monzer J, Lee JY, Ullman DE, Lucas WJ (2000) Characterization of Cucurbita maxima phloem serpin-1 (CmPS-1): a developmentally regulated elastase inhibitor. J Biol Chem 275:35122–35128

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K (2008) Programmed proteome response for drought avoidance/tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol 49:226–241

    Article  PubMed  CAS  Google Scholar 

  • Yu LX, Djebrouni M, Chamberland H, Lafontaine JG, Chitinase TZ (1998) Differential induction of gene expression and enzyme activity by drought stress in the wild (Lycopersicon chilense Dun.) and cultivated (L. esculentum Mill.) tomatoes. J Plant Physiol 153:745–753

    CAS  Google Scholar 

  • Zhen Y, Qi J-L, Wang S-S, Su J, Xu G-H, Zhang M-S, Miao L, Peng X-X, Tian D, Yang Y-H (2007) Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Physiol Plant 131:542–554

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2007-211-F00006 and KRF-F00065). I. Alam, S.A. Sharmin and K.H. Kim are supported by the BK21 program at Gyeongsang National University, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Hyun Lee.

Additional information

Responsible Editor: John McPherson Cheeseman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, I., Sharmin, S.A., Kim, KH. et al. Proteome analysis of soybean roots subjected to short-term drought stress. Plant Soil 333, 491–505 (2010). https://doi.org/10.1007/s11104-010-0365-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0365-7

Keywords

Navigation