Skip to main content

Advertisement

Log in

Spatial variation of plant communities and shoot Cu concentrations of plant species at a timber treatment site

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Plant species, spatial variability in plant diversity and vegetation cover were recorded at a French timber treatment site with Cu-contaminated soils (65–2600 mg/kg). Shoot biomass, shoot Cu concentration and accumulation were determined for each plant species found on 168 quadrats with increasing total Cu in soil and soil solution. A total of 91 species occurred on the site including four considered as invasive (Cyperus eragrostis, Phytolacca americana, Senecio inaequidens, and Sporobolus indicus). Species richness, Shannon index, vegetation cover and plant biomass decreased as soil Cu increased. At low soil Cu, members of the Poaceae were most frequent followed by Fabaceae, Rosaceae, and Asteraceae. At high soil Cu, Poaceae were again most frequent. Species known to form Cu-tolerant populations, i.e. Agrostis capillaris, A. stolonifera and Rumex acetosella were present. Shoot Cu concentration and accumulation were higher in plants growing in the most contaminated soils. At 2142 mg Cu/kg soil, shoot Cu accumulation peaked at 6 mg Cu/m² in A. capillaris, and its shoot Cu concentration (364 mg Cu/kg dry weight) exceeded the fodder Cu threshold for domestic livestock. In less Cu-contaminated soils some candidates were identified for sustainable phytoremediation with a potential financial return.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AD:

Abundance/Dominance index

CCA:

Copper Chromated Arsenate

DOC:

Dissolved Organic Carbon

DOM:

Dissolved Organic Matter

DON:

Dissolved organic nitrogen

GI:

Group I

GII:

Group II

GIII:

Group III

GIV:

Group IV

H:

Shannon index

OM:

Organic matter

PCA:

Principal Component Analysis

Rp :

Pearson coefficients of correlation

SR:

Species richness

References

  • ADEME (1998). La pollution des sols liée aux activités de préservation du bois. ADEME Eds., Angers, France

  • Afnor X31-100 (1994a) Qualité des sols, Echantillonnage, Méthode de prélèvement d’échantillons de sol. In: Afnor (ed) Qualité des Sols—Recueil de Normes Françaises. Afnor, Paris, pp 181–191

    Google Scholar 

  • Afnor X31-103 (1994b) Détermination du pH dans l’eau. Méthode électrométrique. In: Afnor (ed) Qualité des Sols—Recueil de Normes Françaises. Afnor, Paris, pp 339–347

    Google Scholar 

  • Anand M, Laurence S, Rayfield B (2005) Diversity relationships among taxonomic groups in recovering and restored forests. Conserv Biol 19:955–962

    Article  Google Scholar 

  • Bagatto C, Shorthouse JD (1999) Biotic and abiotic characteristics of ecosystems on acid metalliferous mine tailings near Sudbury, Ontario. Can J Bot 77:410–425

    Article  Google Scholar 

  • Baize D (1997) Un Point sur Les Teneurs Totales des Eléments Traces Métalliques dans les Sols. INRA Editions, Paris

    Google Scholar 

  • Baize D, Tercé M (2002) Les Éléments Traces Métalliques dans les Sols—Approches Fonctionnelles et Spatiales. INRA Éditions, Paris

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—Strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Basanova V, Horak O, Ciamporova M, Nadubinska M, Lichtscheidl I (2006) The vegetation of metalliferous and non-metalliferous grasslands in two mine regions in central Slovakia. Biologia 61:433–439

    Article  Google Scholar 

  • Bes C, Mench M (2008) Remediation of copper-contaminated topsoils from a wood treatment facility using in situ phytostabilisation. Environ Pollut 156:1128–1138

    Article  CAS  PubMed  Google Scholar 

  • Bock B (2003) Base de données nomenclaturale de la flore de France, BDNF-V3.02. Tela Botanica, Montpellier. Available via <http://tela-botanica.org/eflore>. Accessed 14 June 2009.

  • Boon GT, Bouwman LA, Bloem J, Romkens P (1998) Effects of a copper-tolerant grass (Agrostis capillaris) on the ecosystem of a copper-contaminated arable soil. Environ Toxicol Chem 17:1964–1971

    CAS  Google Scholar 

  • Brun LA, Maillet J, Richarte J, Herrmann P, Remy JC (1998) Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environ Pollut 102:151–161

    Article  CAS  Google Scholar 

  • Callaway RM (1995) Positive interactions among plants. Bot Rev 61:306–349

    Article  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    Article  CAS  PubMed  Google Scholar 

  • Chirenje T, Ma LQ, Clark C, Reeves M (2003) Cu, Cr and As distribution in soils adjacent to pressure-treated decks, fences and poles. Environ Pollut 124:407–417

    Article  CAS  PubMed  Google Scholar 

  • Climatik J (2009) Available via <https://intranet.inra.fr/climatik/do/welcome>. Accessed 14 June 2009

  • Cuypers A (2000) Phytotoxic concentrations of copper and zinc induce antioxidative defence in Phaseolus vulgaris, cv. Limburgse vroege: a comparative study. PhD dissertation, Limburgs Universitair Centrum, Diepenbeek, Belgium.

  • Dumestre A, Sauve S, McBride M, Baveye P, Berthelin J (1999) Copper speciation and microbial activity in long-term contaminated soils. Arch Environ Con Tox 36:124–131

    Article  CAS  Google Scholar 

  • Eranen JK, Kozlov MV (2007) Competition and facilitation in industrial barrens: variation in performance of mountain birch seedlings with distance from nurse plants. Chemosphere 67:1088–1095

    Article  PubMed  Google Scholar 

  • Foster BL, Smith VH, Dickson TL, Hildebrand T (2002) Invasibility and compositional stability in a grassland community: relationships to diversity and extrinsic factors. Oikos 99:300–307

    Article  Google Scholar 

  • Freitas H, Prasad MNV, Pratas J (2004) Plant community tolerant to trace elements growing on the degraded soils of Sao Domingos mine in the south east of Portugal: environmental implications. Environ Int 30:65–72

    Article  CAS  PubMed  Google Scholar 

  • French CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut 141:387–395

    Article  CAS  PubMed  Google Scholar 

  • Fründ HC, Bravin M, Bossung C, Emmerling C, Hinsinger P, Mench M, Tülp H (2007) Is copper stabilizing organic matter in soils? A survey of vineyards and contaminated sites in Germany and France. In: INRA (ed) International symposium on organic matter dynamics in agro-ecosystems. INRA-ESIP, Poitiers, France, pp 458–459

    Google Scholar 

  • Ginocchio R (2000) Effects of a copper smelter on a grassland community in the Puchuncavi Valley, Chile. Chemosphere 41:15–23

    Article  CAS  PubMed  Google Scholar 

  • Ginnochio R, Carvallo G, Toro I, Bustamante E, Silva Y, Sepulveda N (2004) Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile. Environ. Pollut 127:343–352

    Article  Google Scholar 

  • Hernandez AJ, Pastor J (2008) Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine. Environ Geochem Hlth 30:127–133

    Article  CAS  Google Scholar 

  • Hill MO, Roy DB, Mountford JO, Bunce RGH (2000) Extending Ellenberg’s indicator values to a new area: an algorithmic approach. J Appl Ecol 37:3–15

    Article  Google Scholar 

  • Hutchinson TC, Symington MS (1997) Persistence of metal stress in a forested ecosystem near Sudbury, 66 years after closure of the O’Donnell roast bed. J Geochem Explor 58:323–330

    Article  CAS  Google Scholar 

  • INRA LAS (2009) Méthodes employées au Laboratoire. Méthodes applicables aux sols. Available at http://www.arras.inra.fr/pages/methode_du_las_sols.htm. Accessed August 10, 2009

  • Julve P (1998) Baseflor. Index botanique, écologique et chorologique de la flore de France. Available at http://perso.wanadoo.fr/philippe.julve/catminat.htm. Accessed August 2009.

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • Kim H, Kim DJ, Koo JH, Park JG, Jang YC (2007) Distribution and mobility of chromium, copper, and arsenic in soils collected near CCA-treated wood structures in Korea. Sci Total Environ 374:273–281

    Article  CAS  PubMed  Google Scholar 

  • Knops JMH, Tilman D, Haddad NM, Naeem S, Mitchell CE, Haarstad J, Ritchie ME, Howe KM, Reich PB, Siemann E, Groth J (1999) Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol Lett 2:286–293

    Article  Google Scholar 

  • Koptsik S, Koptsik G, Livantsova S, Eruslankina L, Zhmelkova T, Vologdina Zh (2003) Heavy metals in soils near the nickel smelter: chemistry, spatial variation, and impacts on plant diversity. J Environ Manag 5:441–450

    CAS  Google Scholar 

  • Lepp NW, Hartley J, Toti M, Dickinson NM (1997) Patterns of soil copper contamination and temporal changes in vegetation in the vicinity of a copper rod rolling factory. Environ Pollut 95:363–369

    Article  CAS  PubMed  Google Scholar 

  • Leps J, Hadincova V (1992) How reliable are our vegetation analyses. J Veg Sci 3:119–124

    Article  Google Scholar 

  • Malaisse F, Baker A, Ruelle S (1999) Diversity of plant communities and leaf heavy metal content at Luiswishi copper / cobalt mineralization, Upper Katanga, Dem. Rep. Congo. Biotechnol Agron Soc Environ 3:104–114

    Google Scholar 

  • Mench M, Vangronsveld J, Lepp N, Bleeker P, Ruttens A, Geebelen W (2006) Phytostabilisation of metal—contaminated sites. In: Echevarria G, Morel JL, Goncharova N (eds) Phytoremediation of metal-contaminated soils. Springer, The Netherlands, pp 109–190

    Chapter  Google Scholar 

  • Mench M, Gasté H, Bes C (2008) Phenotypic traits of metallicolous and non-metallicolous Agrostis capillaris exposed to Cu. In: Liskova D, Lux A, Martinka M (eds) COST Action 859, Contaminants and nutrients: availability, accumulation/exclusion and plant-microbia-soil interactions. Bratislava, p 19. Available via http://w3.gre.ac.uk/cost859/WG1/WG1_Smolenice2008_Abstracts.pdf. Accessed 14 June 2009

  • Mench M, Bes C (2009) Assessment of the ecotoxicity of topsoils from a wood treatment site. Pedosphere 19:143–155

    Article  CAS  Google Scholar 

  • Remon E, Bouchardon JL, Cornier B, Guy B, Leclerc JC, Faure O (2005) Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: implications in risk assessment and site restoration. Environ Pollut 137:316–323

    Article  CAS  PubMed  Google Scholar 

  • Remon E, Julve P (2009) Flore et végétation de la France : CATMINAT. Available via http://perso.orange.fr/philippe.julve/catminat.htm. Accessed 14 June 2009

  • Sauvé S, McBride MB, Norvell WA, Hendershot WH (1997) Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter. Water Air Soil Poll 100:133–149

    Article  Google Scholar 

  • Shu WS, Ye ZH, Zhang ZQ, Lan CY, Wong MH (2005) Natural colonization of plants on five lead/zinc mine tailings in Southern China. Restor Ecol 13:49–60

    Article  Google Scholar 

  • Siedlecka A, Tukendorf A, Skórzynska-Polit E, Maksymiec W, Wójcik M, Baszynski T, Krupa Z (2001) Angiosperms (Asteracea, Convolvulacea, Fabacea and Poacea; other than Brassicaceae). In: Prasad MNV (ed) Metals in the Environment, Analysis by Biodiversity. New York, pp 171–217.

  • Simmons JA, Currie WS, Eshleman KN, Kuers K, Monteleone S, Negley TL, Pohlad BR, Thomas CL (2008) Forest to reclaimed mine land use change leads to altered ecosystem structure and function. Ecol Appl 18:104–118

    Article  PubMed  Google Scholar 

  • Sørensen T (1948) A method of establishing groups of equal amplitude in a plant based on similarity of species content and its applications to analysis of vegetation on Danish commons. Biol Skr 5:1–34

    Google Scholar 

  • Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271–280

    Article  CAS  Google Scholar 

  • Strandberg B, Axelsen JA, Bruus Pedersen M, Jensen J, Attrill MJ (2006) Effect of a copper gradient on plant community structure. Environ Toxicol Chem 25:743–753

    Article  CAS  PubMed  Google Scholar 

  • Tabacchi E, Planty-Tabacchi AM (2008) Rôle des systèmes linéaires (corridors routiers et fluviaux) dans l’invasion des espèces végétales introduites. Available via http://www.ecologie.gouv.fr/Role-des-systemes-lineaires.html. Accessed 14 June 2009

  • Teng Y, Luo YM, Huang CY, Long J, Li ZG, Christie P (2008) Tolerance of grasses to heavy metal and microbial functional diversity in soils contaminated with copper mine tailings. Pedosphere 18:363–370

    Article  CAS  Google Scholar 

  • Vidic T, Jogan N, Drobne D, Vihlar B (2006) Natural revegetation in the vicinity of the former lead smelter in Zerjav, Slovenia. Environ Sci Technol 40:4119–4125

    Article  CAS  PubMed  Google Scholar 

  • Wang YB, Liu DY, Zhang L, Li Y, Chu L (2004) Patterns of vegetation succession in the process of ecological restoration on the deserted land of Shizishan copper tailings in Tongling city. Acta Bot Sin 46:780–787

    CAS  Google Scholar 

  • Whiteley GM, Williams S (1993) Effects of treatment of metalliferous mine spoil with lignite derived humic substances on the growth-responses of metal tolerant and non—metal tolerant cultivars of Agrostis capillaris L. Soil Technol 6:163–171

    Article  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  PubMed  Google Scholar 

  • Yazici I, Tuerkan I, Sekmen AH, Demiral T (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ Exp Bot 61:49–57

    Article  CAS  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Phys 17:145–156

    CAS  Google Scholar 

  • Zobel M, Pilt I, Moora M, Pärtel M, Liira J (1999) Small-scale dynamics of plant communities in an experimentally polluted and fungicide-treated subarctic birch-pine forest. Acta Oecol 20:29–37

    Article  Google Scholar 

  • Zvereva EL, Kozlov MV (2004) Facilitative effects of top-canopy plants on four dwarf shrub species in habitats severely disturbed by pollution. J Ecol 92:288–296

    Article  CAS  Google Scholar 

  • Zvereva EL, Toivonen E, Koslov MV (2008) Changes in species richness of vascular plants under the impact of air pollution: a global perspective. Global Ecol Biogeogr 17:305–319

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to ADEME (French Environment and Energy Management Agency ) for funding through the convention n° 05 72 C0018, Department Polluted Sites and Soils, Angers, France, to the Aquitaine Region Council, Bordeaux, France for granting Dr. C. Bes, and to the site owner for allowing access. The authors would also like to thank two anonymous reviewers their helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clémence M. Bes.

Additional information

Responsible Editor: Henk Schat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

(PDF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bes, C.M., Mench, M., Aulen, M. et al. Spatial variation of plant communities and shoot Cu concentrations of plant species at a timber treatment site. Plant Soil 330, 267–280 (2010). https://doi.org/10.1007/s11104-009-0198-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0198-4

Keywords

Navigation