Skip to main content

Advertisement

Log in

Effect of monospecific and mixed Cunninghamia lanceolata plantations on microbial community and two functional genes involved in nitrogen cycling

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Conversion of native broadleaf forest (NF) and introduction of broadleaf species into monospecific Cunninghamia lanceolata plantations are silvicultural practices driven by the increasing demand for timber production. This study was conducted to evaluate the impacts of successive planting of C. lanceolata and mixed plantations (C. lanceolata-Michelia macclurei, CFM; C. lanceolata-Alnus cremastogyne, CFA; C. lanceolata-Kalopanax septemlobus, CFK) on microbial community diversity. Microbial biomass (MBC) was assessed using chloroform fumigation-extraction. Using denaturing gradient gel electrophoresis (DGGE), we examined the biodiversity within eubacterial (16S rRNA gene) and fungal (28S rRNA gene) species and two genes involved in N cycling: nifH and amoA. Microbial community diversities and microbial biomass decreased as NF was substituted by successive plantings of C. lanceolata plantations, whereas the trend reversed after introducing the broadleaf, M. macclurei, into pure C. lanceolata plantations. A strong positive correlation between MBC changes and total organic C (TOC), total organic N (TON), available N and extractable C (Cext) were seen, which suggests that MBC was tightly coupled with the content of soil organic matter. The Shannon index showed that bacterial diversity and two functional genes (nifH and amoA) diversities associated with monospecific C. lanceolata plantations were lower than that of NF or mixed C. lanceolata plantations, such as CFM and CFA, whereas the opposite was seen for fungal diversity. Bacterial diversity was positively correlated with pH, TOC, TON, Cext and NH +4 -N; while fungal diversity was positively correlated with C/N ratio and negatively correlated with pH. Both nitrogen fixing and ammonia oxidizing bacterial diversities were positively correlated with pH. Thus, soil pH was not only significantly positively correlated with bacterial diversity (r = 0.502, P < 0.05), nifH gene diversity (r = 0.564, P < 0.01) and amoA gene diversity (r = 0.659, P < 0.001), but also negatively correlated with fungal diversity (r = − 0.505, P < 0.05), which seemed to be responsible for the discrimination of the soil microbial communities among these plantations. These findings suggest that different silvicultural practices have significant impacts on the soil microbial community through influences on soil chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NF:

the native broadleaf forest

FCF:

the first-generation Cunninghamia lanceolata plantation

SCF:

the second-generation Cunninghamia lanceolata plantation

TCF:

the third-generation Cunninghamia lanceolata plantation

CF:

Cunninghamia lanceolata plantation

CFM:

Cunninghamia lanceolata -Michelia macclurei mixed plantation

CFA:

Cunninghamia lanceolata -Alnus cremastogyne mixed plantation

CFK:

Cunninghamia lanceolata -Kalopanax septemlobus mixed plantation

DGGE:

denaturing gradient gel electrophoresis

PCA:

principal component analysis

References

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. Wiley, New York

    Google Scholar 

  • Allison SM, Prosser JI (1991) Survival of ammonia oxidizing bacteria in air-dried soil. FEMS Microbiol Lett 79:65–68

    Article  CAS  Google Scholar 

  • Anderson TH, Domsch KH (1989) Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol Biochem 21:471–479

    Article  Google Scholar 

  • Anderson IC, Campbell CD, Prosser JI (2003) Diversity of fungi in organic soils under a moorland-Scots pine (Pinus sylvestris L.) gradient. Environ Microbiol 5:1121–1132

    Article  PubMed  Google Scholar 

  • Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann Forest Sci 59:233–253

    Article  Google Scholar 

  • Berch S, Baumbrough B, Battigelli J, Kroeger P, Strub N, de Montigny LBC (2001) Preliminary assessment of selected communities of soil organisms under different conifer species. Ministry of Forests Research Report 20, Research Branch, Victo

  • Boer W, Laanbroek HJ (1989) Ureolytic nitrification at low pH by Nitrosospira spec. Arch Microbiol 152:178–181

    Article  Google Scholar 

  • Cavagnaro TR, Jackson LE, Scow KM, Hristova KR (2007) Effects of arbuscular mycorrhizas on ammonia oxidizing bacteria in an organic farm soil. Microb Ecol 54:618–626

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Wang SL (2004) Ecology of mixed plantation forest. Science, Beijing (in Chinese)

    Google Scholar 

  • Chen CY, Zahng JW, Zhou CL, Zheng HY (1990) Researches on improving the quality of forest land and the productivity of artificial Cunninghamia lanceolata stands. J Appl Ecol 1:97–106 (in Chinese with an English abstract)

    Google Scholar 

  • Chen CY, Liao LP, Wang SL (2000) Ecology of Chinese fir plantation forest. Science, Beijing (in Chinese)

    Google Scholar 

  • Clarholm C (1994) The microbial loop in the soil. The microbial loop in soil. In: Ritz K, Dighton J, Giller KE (eds) Beyond the Biomass Compositional and Functional Analysis of Soil Microbial Communities. Wiley, Chichester, pp 221–230

    Google Scholar 

  • Diallo MD, Willems A, Vloemans N, Cousin S, Vandekerckhove TT, de Lajudie P, Neyra M, Vyverman W, Gillis M, Van der Gucht K (2004) Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the N2-fixing bacterial diversity in soil under Acacia tortilis ssp. raddiana and Balanites aegyptiaca in the dry land part of Senegal. Environ Microbiol 6:400–415

    Article  CAS  Google Scholar 

  • Eichner CA, Erb RW, Timmis KN, Wagner DI (1999) Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microbiol 65:102–109

    PubMed  CAS  Google Scholar 

  • Feng ZW, Chen CY, Zhang JW (1988) A coniferous broad-leaved mixed forest with higher productivity and ecological harmony in subtropics—study on mixed forest of Cunningharnia lanceolata and Michelia macclurei. Acta Phytoecl Geobotan Sin 12:165–180 (in Chinese)

    Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103:626–631

    Article  PubMed  CAS  Google Scholar 

  • Frijlink MJ, Abee T, Laanbroek HJ, Boer W, Konings WN (1992) The bioenergetics of ammonia and hydroxylamine oxidation in Nitrosomonas europaea at acid and alkaline pH. Arch Microbiol 157:194–199

    Article  CAS  Google Scholar 

  • Grayston S, Campbell C (1996) Functional biodiversity of microbial communities in the rhizospheres of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis). Tree Physiol 16:1031–1038

    PubMed  Google Scholar 

  • Grayston SJ, Prescott CE (2005) Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biol Biochem 37:1157–1167

    Article  CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • Hackl E, Pfeffer M, Donat C, Bachmann G, Zechmeister-Boltenstern S (2005) Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biol Biochem 37:661–671

    Article  CAS  Google Scholar 

  • Högberg MN, Högberg P, Myrold DD (2007) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150:590–601

    Article  PubMed  Google Scholar 

  • Huang Y, Wang S, Feng Z, Gao H, Wang Q, Hu Y, Yan S (2004) Soil quality assessment of forest stand in different plantation esosystems. J Appl Ecol 15:2199–2205 (in Chinese with an English abstract)

    CAS  Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant Microbe Interact 17:1078–1085

    Article  PubMed  CAS  Google Scholar 

  • Jiang QQ, Bakken LR (1999) Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiol Ecol 30:171–186

    Article  PubMed  CAS  Google Scholar 

  • Kemmitt SJ, Wright D, Goulding KWT, Jones DL (2006) pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol Biochem 38:898–911

    Article  CAS  Google Scholar 

  • Krave AS, Lin B, Braster M, Laverman AM, Straalen NM, Roling WFM, Verseveld HW (2002) Stratification and seasonal stability of diverse bacterial communities in a Pinus merkusii (pine) forest soil in central Java, Indonesia. Environ Microbiol 4:361–373

    Article  PubMed  Google Scholar 

  • Leckie SE, Prescott CE, Grayston SJ, Neufeld JD, Mohn WW (2004) Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability. Microb Ecol 48:29–40

    Article  PubMed  CAS  Google Scholar 

  • Lejon DPH, Chaussod R, Ranger J, Ranjard L (2005) Microbial community structure and density under different tree species in an acid forest soil (Morvan, France). Microb Ecol 50:614–625

    Article  PubMed  Google Scholar 

  • Li YM, Hu JC, Zhang J, Wang SL, Wang SJ (2005) Microbial diversity in continuously planted Chinese fir soil. J Appl Ecol 16:1275–1278 (in Chinese with an English abstract)

    CAS  Google Scholar 

  • Malchair S, Carnol M (2009) Microbial biomass and C and N transformations in forest floors under European beech, sessile oak, Norway spruce and Douglas-fir at four temperate forest sites. Soil Biol Biochem 41:831–839

    Article  CAS  Google Scholar 

  • Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35:453–461

    Article  CAS  Google Scholar 

  • Mehta MP, Butterfield DA, Baross JA (2003) Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge. Appl Environ Microbiol 69:960–970

    Article  PubMed  CAS  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Moisander PH, Shiue L, Steward GF, Jenkins BD, Bebout BM, Zehr JP (2006) Application of a nifH oligonucleotide microarray for profiling diversity of N2-fixing microorganisms in marine microbial mats. Environ Microbiol 8:1721–1730

    Article  PubMed  CAS  Google Scholar 

  • Moller J, Miller M, Kjoller A (1999) Fungal–bacterial interaction on beech leaves: influence on decomposition and dissolved organic carbon quality. Soil Biol Biochem 31:367–374

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Muyzer G, Brinkhoff T, Nubel U, Santegoeds C, Schafer H, Wawer C (1997) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. Molecular microbial ecology manual 1 and 2:743–769

    Google Scholar 

  • Ogilvie LA, Hirsch PR, Johnston AWB (2008) Bacterial diversity of the Broadbalk ‘classical’winter wheat experiment in relation to long-term fertilizer inputs. Microb Ecol 56:525–537

    Article  PubMed  Google Scholar 

  • Okano Y, Hristova KR, Leutenegger CM, Jackson LE, Denison RF, Gebreyesus B, Lebauer D, Scow KM (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70:1008–1016

    Article  PubMed  CAS  Google Scholar 

  • Parrotta JA (1999) Productivity, nutrient cycling, and succession in single-and mixed-species plantations of Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala in Puerto Rico. For Ecol Manag 124:45–77

    Article  Google Scholar 

  • Paul EA, Clark MF (1996) Soil Microbiology and Biochemistry. Academic, San Diego

    Google Scholar 

  • Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103

    Article  PubMed  CAS  Google Scholar 

  • Preston S, Wirth S, Ritz K, Griffiths BS, Young IM (2001) The role played by microorganisms in the biogenesis of soil cracks: importance of substrate quantity and quality. Soil Biol Biochem 33:1851–1858

    Article  CAS  Google Scholar 

  • Priha O, Grayston SJ, Hiukka R, Pennanen T, Smolander A (2001) Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Biol Fertil Soils 33:17–24

    Article  CAS  Google Scholar 

  • Purkhold U, Pommerening-Roser A, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382

    Article  PubMed  CAS  Google Scholar 

  • Rangaraj P, Ryle MJ, Lanzilotta WN, Goodwin PJ, Dean DR, Shah VK, Ludden PW (1999) Inhibition of iron-molybdenum cofactor biosynthesis by L127Delta NifH and evidence for a complex formation between L127Delta NifH and NifNE. J Biol Chem 274:29413–29419

    Article  PubMed  CAS  Google Scholar 

  • Ranjard L, Poly F, Nazaret S (2000) Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Res Microbiol 151:167–177

    Article  PubMed  CAS  Google Scholar 

  • Rao KS, Maikhuri RK, Saxena KG (1999) Participatory approach to rehabilitation of degraded forest lands: a case study in a high altitude village of Indian Himalaya. Int Tree Crops J 10:1–17

    Google Scholar 

  • Ros M, Goberna M, Pascual JA, Klammer S, Insam H (2008) 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. J Microbiol Methods 72:221–226

    Article  PubMed  CAS  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    PubMed  CAS  Google Scholar 

  • Rout SK, Gupta SR (1989) Soil respiration in relation to abiotic factors, forest floor litter, root biomass and litter quality in forest ecosystems of Siwaliks in northern India. Acta Oecol. (Oecol. Plant.) 10:229–244

    Google Scholar 

  • Sandhu GS, Kline BC, Stockman L, Roberts GD (1995) Molecular probes for the diagnosis of fungal infections. J Clin Microbiol 33:2913–2919

    PubMed  CAS  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif mutant strains. Mol Plant Microb Interact 14:358–366

    Article  CAS  Google Scholar 

  • Singh JS, Raghubanshi AS, Singh RS, Srivastava SC (1989) Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature 338:499–500

    Article  Google Scholar 

  • Smolander A, Barnette L, Kitunen V, Lumme I (2005) N and C transformations in long-term N-fertilized forest soils in response to seasonal drought. Appl Soil Ecol 29:225–235

    Article  Google Scholar 

  • Stevenson FJ (1982) Humus chemistry: genesis, composition, reactions. Wiley-Interscience, New York

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM, Anderson DJ, Greig Smith P, Pitelka FA (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Tate KR, Ross DJ, Feltham CW (1988) A direct extraction method to estimate soil microbial C: effects of experimental variables and some different calibration procedures. Soil Biol Biochem 20:329–335

    Article  CAS  Google Scholar 

  • Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  PubMed  CAS  Google Scholar 

  • Torsvik V, Ovreas L, Thingstad TF (2002) Prokaryotic diversity–magnitude, dynamics, and controlling factors. Science 296:1064–1066

    Article  PubMed  CAS  Google Scholar 

  • Turner DP, Sollins P, Leuking M, Rudd N (1993) Availability and uptake of inorganic nitrogen in a mixed old-growth coniferous forest. Plant Soil 148:163–174

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Wakelin SA, Colloff MJ, Harvey PR, Marschner P, Gregg AL, Rogers SL (2007) The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize. FEMS Microbiol Ecol 59:661–670

    Article  PubMed  CAS  Google Scholar 

  • Wang QK, Wang SL (2007) Soil organic matter under different forest types in Southern China. Geoderma 142:349–356

    Article  CAS  Google Scholar 

  • Wang SL, Liao LP, Ma YQ (1997) Nutrient return and productivity of mixed Cunninghamia lanceolata and Michelia macclurei plantations. J Appl Ecol 8:347–352 (in Chinese with an English abstract)

    Google Scholar 

  • Wang Q, Wang S, Gao H, Yu X (2005) Dynamics of soil active organic matter in Chinese fir plantations. J Appl Ecol 16:1270–1274 (in Chinese with an English abstract)

    CAS  Google Scholar 

  • Wang Q, Wang S, Fan B, Yu X (2007) Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: effect of planting conifers with broadleaved species. Plant Soil 297:201–211

    Article  CAS  Google Scholar 

  • Wang Q, Wang S, Huang Y (2008) Comparisons of litterfall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed stand in southern China. For Ecol Manag 255:1210–1218

    Article  Google Scholar 

  • Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–358

    Article  Google Scholar 

  • Williams ST, Gray TRG (1974) Decomposition of litter on the soil surface. In: Dickinson CH, Pugh GJF (eds) Biology of plant litter decomposition, 2nd edn. Academic, London, pp 611–632

    Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Yang YS, Qiu RH, Yu XY, Huang BL (1999) Study on soil microbes and biochemical activity in the continunous plantations of Cunninghamia lanceolata. Biodivers Sci 7:1–7

    Google Scholar 

  • Yao S, Merwin IA, Bird GW, Abawi GS, Thies JE (2005) Orchard floor management practices that maintain vegetative or biomass groundcover stimulate soil microbial activity and alter soil microbial community composition. Plant Soil 271:377–389

    Article  CAS  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by The National Natural Science Foundation of China (40801093 and 40801202) and the Key Project of the Knowledge Innovation Program of Chinese Academy of Sciences (KZCXZ-YW-405).We thank Ch. Y. Chen, X. J. Yu, Q. K. Wang, L. Ch. Chen and B. Fang for considerable help with soil sampling in Huitong Experimental Station of Forest Ecology. We also thank the editor and two anonymous reviewers for their helpful comments and suggestions for improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiangChun Hu.

Additional information

Responsible Editor: Per Ambus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Duan, Z., Xu, M. et al. Effect of monospecific and mixed Cunninghamia lanceolata plantations on microbial community and two functional genes involved in nitrogen cycling. Plant Soil 327, 413–428 (2010). https://doi.org/10.1007/s11104-009-0067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0067-1

Keywords

Navigation