Skip to main content
Log in

Seasonal and daily time course of the 13C composition in soil CO2 efflux recorded with a tunable diode laser spectrophotometer (TDLS)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Temporal variations of carbon isotope composition of soil CO2 efflux (FS and δ13CFS) at different time scales should reflect both temporal variations of the climate conditions that affect canopy functioning and temporal changes in the relative contribution of autotrophic respiration to total FS. A tunable diode laser spectrophotometer (TDLS) was installed in the Hesse forest (northeast of France) early during the 2007 growing season to determine the seasonal and daily variability in δ13CFS. This method, based on the measurement of the absorption of an infrared laser emission at specific wave lengths of the 13CO2 and 12CO2, allows the continuous monitoring of the two isotopologues. The concentrations of the two isotopologues in FS were continuously monitored from June to November 2007 using chamber method and Keeling plots drawn from nocturnal accumulation of CO2 below the canopy. These TDLS measurements and isotope ratio mass spectrometer based Keeling plots gave very similar values of δ13CFS, showing the reliability of the TDLS system in this context. Results were analysed with regard to seasonal and daily changes in climatic and edaphic variables and compared with the δ13C of CO2 respired by roots, litter and soil incubated under controlled conditions. Pronounced daily as well as seasonal variations in δ13CFS were recorded (up to 1.5‰). The range of variation of δ13CFS was of the same order of magnitude at both diurnal and seasonal scales. δ13CFS observed in the field fluctuated between values of litter and of root respiration recorded during incubation, suggesting that temporal (and probably spatial) variations were associated with changes in the relative contribution of the two compartments during the day and during the season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allan DW (1966) Statistics of atomic frequency standards. Proc IEEE 54:221–231. doi:10.1109/PROC.1966.4634

    Article  Google Scholar 

  • Alstad KP, Lai CT, Flanagan LB, Ehleringer JR (2007) Environmental controls on the carbon isotope composition of ecosystem-respired CO2 in contrasting forest ecosystems in Canada and the USA. Tree Physiol 27:1361–1374

    PubMed  CAS  Google Scholar 

  • Andrews JA, Matamala R, Westover KM, Schlesinger WH (2000) Temperature effects on the diversity of soil heterotrophs and the δ13C of soil-respired CO2. Soil Biol Biochem 32:699–706. doi:10.1016/S0038-0717(99)00206-0

    Article  CAS  Google Scholar 

  • Badeck FW, Tcherkez G, Nogues S, Piel C, Ghashghaie J (2005) Post-photsynthetic fractionation of stable carbon isotopes between plat organs - a widespread phenomenon. Rapid Commun Mass Spectrom 19:1381–1391. doi:10.1002/rcm.1912

    Article  PubMed  CAS  Google Scholar 

  • Betson NR, Göttlicher SG, Hall M, Wallin G, Richter A, Högberg P (2007) No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest. Tree Physiol 27:749–756

    PubMed  CAS  Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572. doi:10.1038/25119

    Article  CAS  Google Scholar 

  • Bowling DR, McDowell NG, Bond BJ, Law BE, Ehleringer JR (2002) 13C content of ecosystem of ecosystem respiration is linked to precipitation and vapour pressure deficit. Oecologia 131:113–124. doi:10.1007/s00442-001-0851-y

    Article  Google Scholar 

  • Bowling DR, Sargent SD, Tanner BD, Ehleringer JR (2003) Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange. Agric For Meteorol 118:1–19. doi:10.1016/S0168-1923(03)00074-1

    Article  Google Scholar 

  • Bowling DR, Burns SP, Conway T, Monson R, White JWC (2005) Extensive observations of CO2 carbon isotope content in and above a high-elevation subalpine forest. Global Biogeochem Cy 19:GB30231–GB302315

    Article  CAS  Google Scholar 

  • Bowling DR, Pataki DE, Randerson JT (2008) Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol 174:24–40. doi:10.1111/j.1469-8137.2007.02342.x

    Article  CAS  Google Scholar 

  • Buchmann N, Guehl JM, Barigah TS, Ehleringer JR (1997) Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in a Amazonian rainforest (French Guiana). Oecologia 110:120–131. doi:10.1007/s004420050140

    Article  Google Scholar 

  • Davidson EA, Trumbore SE, Amundson R (2000) Soil warming and organic carbon content. Nature 408:789–790. doi:10.1038/35048672

    Article  PubMed  CAS  Google Scholar 

  • Ekblad A, Högberg P (2001) Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between photostynthesis and root respiration. Oecologia 127:305–308. doi:10.1007/s004420100667

    Article  Google Scholar 

  • Ekblad A, Boström B, Holm A, Comstedt D (2005) Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 143:136–142. doi:10.1007/s00442-004-1776-z

    Article  PubMed  Google Scholar 

  • Epron E, Le Dantec V, Dufrêne E, Granier A (2001) Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest. Tree Physiol 21:145–152

    PubMed  CAS  Google Scholar 

  • Epron D, Ngao J, Granier A (2004) Interannual variation of soil respiration in a beech forest ecosystem over a six-year study. Ann For Sci 61:499–505. doi:10.1051/forest:2004044

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu. Rev Plant Phys Plant Mol Biol 40:503–537. doi:10.1146/annurev.pp.40.060189.002443

    Article  CAS  Google Scholar 

  • Gessler A, Keitel C, Kodama N, Weston C, Winters AJ, Keith H, Grice K, Leuning R, Farquhar GD (2007) Δ13C of organic matter transported from the leaves to the roots in Eucalyptus delegatensis: short-term variations and relation to respired CO2. Funct Plant Biol 34:692–706. doi:10.1071/FP07064

    Article  CAS  Google Scholar 

  • Gessler A, Tcherkez G, Peuke AD, Ghashghaie J, Farquhar GD (2008) Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis. Plant Cell Environ 31:941–953. doi:10.1111/j.1365-3040.2008.01806.x

    Article  PubMed  CAS  Google Scholar 

  • Granier A, Biron P, Lemoine D (2000) Water balance, transpiration and canopy conductance in two beech stands. Agric For Meteorol 100:291–308. doi:10.1016/S0168-1923(99)00151-3

    Article  Google Scholar 

  • Griffis TJ, Baker JM, Sargent SD, Tanner BD, Zhang J (2004) Measuring field-scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques. Agric For Meteorol 124:15–29. doi:10.1016/j.agrformet.2004.01.009

    Article  Google Scholar 

  • Janssens IA, Kowalski AS, Ceulemans R (2001) Forest floor CO2 fluxes estimated by eddy covariance and chamber-based model. Agric For Meteorol 106:61–69. doi:10.1016/S0168-1923(00)00177-5

    Article  Google Scholar 

  • Keeling CD (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta 13:322–334. doi:10.1016/0016-7037(58)90033-4

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760. doi:10.1016/0038-0717(94)00242-S

    Article  CAS  Google Scholar 

  • Kodama N, Barnard RL, Salmon Y, Weston C, Ferrio JP, Holst J, Werner RA, Saurer M, Rennenberg H, Buchmann N, Gessler A (2008) Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: from newly assimilated organic carbon to respired carbon dioxide. Oecologia 156:737–750. doi:10.1007/s00442-008-1030-1

    Article  PubMed  Google Scholar 

  • Lloyd J, Farquhar GD (1994) 13C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia 99:201–215. doi:10.1007/BF00627732

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323. doi:10.2307/2389824

    Article  Google Scholar 

  • Longdoz B, Yernaux M, Aubinet M (2000) Soil CO2 efflux measurements in a mixed forest: impact of chamber disturbances, spatial variability and seasonal evolution. Glob Change Biol 6:907–917. doi:10.1046/j.1365-2486.2000.00369.x

    Article  Google Scholar 

  • Longdoz B, Gross P, Granier A (2008) Multiple quality tests for analysing CO2 fluxes in a beech temperate forest. Biogeosciences 5:719–729

    Article  CAS  Google Scholar 

  • Murtaugh PA (2007) Simplicity and complexity in ecological data analysis. Ecology 88:56–62. doi:10.1890/0012-9658(2007)88[56:SACIED]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Ngao J, Epron D, Bréchet C, Granier A (2005) Estimating the contribution of leaf litter decomposition to soil CO2 efflux in a beech forest using 13C-depleted litter. Glob Change Biol 11:1768–1776. doi:10.1111/j.1365-2486.2004.01014.x

    Article  Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567. doi:10.1016/0031-9422(81)85134-5

    Article  Google Scholar 

  • Quentin C, Bigorre F, Bréda N (2001) Etude des sols de la forêt de Hesse (Lorraine). Contribution à l’étude du bilan hydrique. Etude Gestion Sols. 8:215–229

    Google Scholar 

  • Qi Y, Xu M, Wu J (2002) Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprises. Ecol Modell 153:131–142. doi:10.1016/S0304-3800(01)00506-3

    Article  CAS  Google Scholar 

  • Rayment MB, Jarvis PG (1997) An improved open chamber system for measuring soil CO2 effluxes of a Boreal black spruce forest. J Geophys Res 102:28779–28784. doi:10.1029/97JD01103

    Article  CAS  Google Scholar 

  • Rochette P, Flanagan LB (1997) Quantifying rhizosphere respiration in a corn crop under filed conditions. Soil Sci Soc Am J 61:466–474

    CAS  Google Scholar 

  • Santaren D, Peylin P, Viovy N, Ciais P (2007) Optimizing a process-based ecosystem model with eddy-covariance flux measurements: A pine forest in southern France. Global Biogeochem Cycles 21:GB2013. doi:10.1029/2006GB002834

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman WH (ed), New York

    Google Scholar 

  • Stoy PC, Palmroth S, Oishi AC, Siqueira MBS, Juang JY, Novick KA, Ward EJ, Katul GG, Oren R (2007) Are ecosystem carbon inputs and outputs coupled at short time scales? A case study from adjacent pine and hardwood forests using impulse-response analysis. Plant Cell Environ 30:700–710. doi:10.1111/j.1365-3040.2007.01655.x

    Article  PubMed  CAS  Google Scholar 

  • Werle P, Mücke R, Slemr F (1993) The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser spectroscopy. Appl Phys B 57:131–139. doi:10.1007/BF00425997

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to André Clerc (Université Henri Poincaré, Nancy) for the building of the TDLS chamber, Jacques Banvoy, Pascal Courtois, Jean-Marie Gioria, Bernard Clerc, and Patrick Gross (UMR Ecologie et Ecophysiologie Forestières, Nancy) for technical help, Claude Bréchet, Christian Hossann (UMR EEF, Nancy), Caroline Guilmette, and Christian France-Lanord (Centre de Recherches Pétrographiques et Géochimiques, Nancy) for the mass spectrometry analysis, Sophie Bernard, Laetitia Valentin, and Fanny Vaxelaire for help with data collection, and Michel Yernaux (Faculté Universitaire des Sciences Agronomiques de Gembloux, Unité de Physique des Biosystèmes, Belgium) for the conception and lending of the incubation chamber. The authors also warmly thank Dr. Andrew Merchant (University of New South Wales, Sydney, Australia) for his useful corrections on the manuscript. This experiment was partly funded by the Lorraine regional council and by the EFPA department of INRA. NM was supported by a postdoctoral fellowship provided by INRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Marron.

Additional information

Responsible editor: Erik A. Hobbie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marron, N., Plain, C., Longdoz, B. et al. Seasonal and daily time course of the 13C composition in soil CO2 efflux recorded with a tunable diode laser spectrophotometer (TDLS). Plant Soil 318, 137–151 (2009). https://doi.org/10.1007/s11104-008-9824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9824-9

Keywords

Navigation