Skip to main content
Log in

Carbon and nitrogen accumulation and microbial activity in Mount St. Helens pyroclastic substrates after 25 years

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Lupines (Lupinus lepidus var. lobbii) are important integrators of above and belowground development of Mount St. Helens (1980) pyroclastic substrates because they increase soil organic matter formation and microbial activity and influence other biotic processes. However, basic information is required to understand the unfolding pattern of soil development and to corroborate evidence for increasing rates of organic matter accumulation suggested by earlier work. Soil properties were measured in bare pyroclastic sites without lupines or other plants, under live and under dead L. lepidus. In 2005, pyroclastic substrates had low cation exchange capacity but appeared able to supply sufficient P for plant growth. Soil under live and dead lupines contained higher concentrations of soluble and total C and N, larger, more active microbial communities, more Bradford reactive soil protein and enzymes, and had higher mineralization potentials than bare soil. Comparatively, lupine soil was less dense and had lower C to N ratios and relative respiration rates. Soil microbial biomass-C, determined by substrate-induced respiration, had not increased under lupines since 1990, and was indistinguishable from hot water soluble-C, suggesting microorganisms were a predominant pool of labile-C in these developing soils. Evidence for an important soil glycoprotein, glomalin, in these pyroclastic substrates suggests it can form early during soil development. Concentrations of total C and N under lupines have risen to nearly 4 and 0.4 g kg−1 respectively since the 1980 eruption, but 2005 data indicate little change since 1997 and imply inputs from lupines into soil are in equilibrium with losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adema EB, Van de Koppel J, Meijer HAJ, Grootjans AP (2005) Enhanced nitrogen loss may explain alternative stable states in dune slack succession. Oikos 109:374–386 doi:10.1111/j.0030-1299.2005.13339.x

    Google Scholar 

  • Allen MF, Crisafulli CM, Morris SJ, Egerton-Warburton LM, MacMahon JA, Trappe JM (2005) Mycorrhizae and Mount St. Helens: story of a symbiosis. In: Dale VH, Swanson FJ, Crisafulli CM (eds) Ecological responses to the 1980 eruption of Mount St. Helens. Springer, New York, NY, pp 221–231

    Google Scholar 

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221 doi:10.1016/0038-0717(78)90099-8

    CAS  Google Scholar 

  • Anderson T-H, Domsch KH (1990) Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol Biochem 22:251–255 doi:10.1016/0038-0717(90)90094-G

    Google Scholar 

  • Bailey VL, Peacock AD, Smith JL, Bolton H (2002) Relationships between soil microbial biomass determined by chloroform fumigation–extraction, substrate-induced respiration, and phospholipid fatty acid analysis. Soil Biol Biochem 34:1385–1389 doi:10.1016/S0038-0717(02)00070-6

    CAS  Google Scholar 

  • Bardgett RD, Walker LR (2004) Impact of coloniser plant species on the development of decomposer microbial communities following deglaciation. Soil Biol Biochem 36:555–559 doi:10.1016/j.soilbio.2003.11.002

    CAS  Google Scholar 

  • Bardgett RD, Wardle DA (2003) Herbivore mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268 doi:10.1890/02-0274

    Google Scholar 

  • Bartelt-Ryser J, Joshi J, Schmid B, Brandl H, Balser T (2005) Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. Perspect Plant Ecol Evol Syst 7:27–49 doi:10.1016/j.ppees.2004.11.002

    Google Scholar 

  • Bedard-Haughn A, van Groenigen JW, van Kessel C (2003) Tracing 15N through landscapes: potential uses and precautions. J Hydrol 272:175–190 doi:10.1016/S0022-1694(02)00263-9

    CAS  Google Scholar 

  • Bishop JG (2002) Early primary succession on Mount St. Helens: impact of insect herbivores on colonizing lupines. Ecology 83:191–202

    Google Scholar 

  • Bishop JG, Fagan WF, Schade JD, Crisafulli CM (2005) Causes and consequences of herbivory on prairie lupine (Lupinus lepidus) in early primary succession. In: Dale VH, Swanson FJ, Crisafulli CM (eds) Ecological responses to the 1980 eruption of Mount St. Helens. Springer, New York, NY, pp 151–161

    Google Scholar 

  • Bolton Jr H, Elliott LF, Papendick RI, Bezdicek DF (1985) Soil microbial biomass and selected soil enzyme activities: effect of fertilization and cropping practices. Soil Biol Biochem 17:297–302

    CAS  Google Scholar 

  • Boström B, Comstedt D, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153:89–98 doi:10.1007/s00442-007-0700-8

    PubMed  Google Scholar 

  • Braatne JH, Bliss LC (1999) Comparative physiological ecology of lupines colonizing early successional habitats on Mount St. Helens. Ecology 80:891–907

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 doi:10.1016/0003-2697(76)90527-3

    PubMed  CAS  Google Scholar 

  • Bundy LG, Meisinger JJ (1994) Nitrogen availability indices. In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis, part 2: microbiological and biochemical properties. Soil Science Society of America, Madison, WI, pp 951–984

    Google Scholar 

  • Cannell MGR, Thornley JHM (2000) Nitrogen states in plant ecosystems: a viewpoint. Ann Bot 86:1161–1167 doi:10.1006/anbo.2000.1286

    CAS  Google Scholar 

  • Cázares E, Trappe JM, Jumpponen A (2005) Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession. Mycorrhiza 15:405–416 doi:10.1007/s00572-004-0342-1

    PubMed  Google Scholar 

  • Chadwick OA, Chorover J (2001) The chemistry of pedogenic thresholds. Geoderma 100:321–353 doi:10.1016/S0016-7061(01)00027-1

    CAS  Google Scholar 

  • Chapin FS, Vitousek PM, Van Cleve K (1986) The nature of nutrient limitation in plant communities. Am Nat 127:48–58 doi:10.1086/284466

    Google Scholar 

  • Classen AT, DeMarco J, Hart SC, Whitham TG, Cobb NS, Koch GW (2006) Impacts of herbivorous insects on decomposer communities during the early stages of primary succession in a semi-arid woodland. Soil Biol Biochem 38:972–982 doi:10.1016/j.soilbio.2005.08.009

    CAS  Google Scholar 

  • Conen F, Yakutin MV, Zumbrunn T, Leifeld J (2007) Organic carbon and microbial biomass in two soil development chronosequences following glacial retreat. Eur J Soil Sci 58:758–762 doi:10.1111/j.1365-2389.2006.00864.x

    Google Scholar 

  • Curtin D, Wright CE, Beare MH, McCallum FM (2006) Hot water-extractable nitrogen as an Indicator of soil nitrogen availability. Soil Sci Soc Am J 70:1512–1521 doi:10.2136/sssaj2005.0338

    CAS  Google Scholar 

  • De Deyn GB, Raaijmakers CE, Van Der Putten WH (2004) Plant community development is affected by nutrients and soil biota. J Ecol 92:824–834 doi:10.1111/j.0022-0477.2004.00924.x

    Google Scholar 

  • del Moral R (2007) Limits to convergence of vegetation during early primary succession. J Veg Sci 18:479–488 doi:10.1658/1100-9233(2007)18[479:LTCOVD]2.0.CO;2

    Google Scholar 

  • del Moral R, Rozzell LR (2005) Long-term effects of Lupinus lepidus on vegetation dynamics at Mount St. Helens. Plant Ecol 181:203–215 doi:10.1007/s11258-005-6627-4

    Google Scholar 

  • del Moral R, Wood DM, Titus JH (2005) Proximity, microsites, and biotic interactions during early succession. In: Dale VH, Swanson FJ, Crisafulli CM (eds) Ecological responses to the 1980 eruption of Mount St. Helens. Springer, New York, NY, pp 93–110

    Google Scholar 

  • Ehleringer JR, Buchmann N, Flanagan LB (2000) Carbon isotope ratios in belowground carbon cycle processes. Ecol Appl 10:412–422 doi:10.1890/1051-0761(2000)010[0412:CIRIBC]2.0.CO;2

    Google Scholar 

  • Engle M (1983) Carbon, nitrogen and microbial colonization of volcanic debris on Mount St. Helens. In: Environmental Science and Regional Planning. Washington State University, Pullman, WA, USA.

  • Fagan WF, Bishop JG (2000) Trophic interactions during primary succession: herbivores slow a plant reinvasion at Mount St. Helens. Am Nat 155:238–251 doi:10.1086/303320

    PubMed  Google Scholar 

  • Fagan WF, Bishop JG, Schade JD (2004) Spatially structured herbivory and primary succession at Mount St Helens: field surveys and experimental growth studies suggest a role for nutrients. Ecol Entomol 29:398–409 doi:10.1111/j.0307-6946.2004.00616.x

    Google Scholar 

  • Field CB, Kaduk J (2004) The carbon balance of an old-growth forest: building across approaches. Ecosystems 7:525–533 doi:10.1007/s10021-004-0142-7

    CAS  Google Scholar 

  • Gadgil RL (1971) The nutritional role of Lupinus arboreus in coastal sand dune forestry. Plant Soil 35:113–126 doi:10.1007/BF01372636

    CAS  Google Scholar 

  • Ghani A, Dexter M, Perrott KW (2003) Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem 35:1231–1243 doi:10.1016/S0038-0717(03)00186-X

    CAS  Google Scholar 

  • Gill R, Boie J, Bishop J, Larsen L, Apple J, Evans R (2006) Linking community and ecosystem development on Mount St. Helens. Oecologia 148:312–324 doi:10.1007/s00442-006-0358-7

    PubMed  Google Scholar 

  • Gosling P (2005) Facilitation of Urtica dioica colonisation by Lupinus arboreus on a nutrient-poor mining spoil. Plant Ecol 178:141–148 doi:10.1007/s11258-004-2782-2

    Google Scholar 

  • Gutiérrez JL, Jones CG (2006) Physical ecosystem engineers as agents of biogeochemical heterogeneity. BioScience 56:227–236 doi:10.1641/0006-3568(2006)056[0227:PEEAAO]2.0.CO;2

    Google Scholar 

  • Halvorson JJ (1989) Carbon and nitrogen contributions to Mount St. Helens volcanic sites by lupines. Washington State University, Pullman, WA, USA, p 264

    Google Scholar 

  • Halvorson JJ, Gonzalez JM (2006) Bradford reactive soil protein in Appalachian soils: distribution and response to incubation, extraction reagent and tannins. Plant Soil 286:339–356 doi:10.1007/s11104-006-9047-x

    CAS  Google Scholar 

  • Halvorson JJ, Smith JL (1995) Decomposition of lupine biomass by soil microorganisms in developing Mount St. Helens pyroclastic soils. Soil Biol Biochem 27:983–992 doi:10.1016/0038-0717(95)00026-B

    CAS  Google Scholar 

  • Halvorson JJ, Black RA, Smith JL, Franz EH (1991a) Nitrogenase activity, growth and carbon and nitrogen allocation in wintergreen and deciduous lupine seedlings. Funct Ecol 5:554–561 doi:10.2307/2389638

    Google Scholar 

  • Halvorson JJ, Smith JL, Franz EH (1991b) Lupine influence on soil carbon, nitrogen and microbial activity in developing ecosystems at Mount St. Helens. Oecologia 87:162–170 doi:10.1007/BF00325253

    Google Scholar 

  • Halvorson JJ, Franz EH, Smith JL, Black RA (1992) Nitrogenase activity, nitrogen fixation and nitrogen inputs by lupines at Mount St. Helens. Ecology 73:87–98 doi:10.2307/1938723

    CAS  Google Scholar 

  • Halvorson JJ, Smith JL, Kennedy AC (2005) Lupine effects on soil development and function during early primary succession at Mount St. Helens. In: Dale VH, Swanson FJ, Crisafulli CM (eds) Ecological responses to the 1980 eruptions of Mount St. Helens. Springer, New York, NY, pp 243–254

    Google Scholar 

  • He L, Tang Y (2008) Soil development along primary succession sequences on moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China. Catena 72:259–269 doi:10.1016/j.catena.2007.05.010

    Google Scholar 

  • Hobbie EA, Werner RA (2004) Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytol 161:371–385 doi:10.1111/j.1469-8137.2004.00970.x

    CAS  Google Scholar 

  • Hobbie EA, Jumpponen A, Trappe J (2005) Foliar and fungal 15N:14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models. Oecologia 146:258–268 doi:10.1007/s00442-005-0208-z

    PubMed  Google Scholar 

  • Hoblitt RP, Miller CD, Vallance JW (1981) Origin and stratigraphy of the deposit produced by the May 18 directed blast. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, U.S. Geological Survey professional paper 1250. U.S. Geological Survey, Washington, pp 401–419

    Google Scholar 

  • Hogberg P (1997) Tansley review no. 95. 15N natural abundance in soil-plant systems. New Phytol 137:179–203 doi:10.1046/j.1469-8137.1997.00808.x

    Google Scholar 

  • Holdaway RJ, Sparrow AD (2006) Assembly rules operating along a primary riverbed-grassland successional sequence. J Ecol 94:1092–1102 doi:10.1111/j.1365-2745.2006.01170.x

    Google Scholar 

  • Ibekwe AM, Kennedy AC, Halvorson JJ, Yang C-H (2007) Characterization of developing microbial communities in Mount St. Helens pyroclastic substrate. Soil Biol Biochem 39:2496–2507 doi:10.1016/j.soilbio.2007.05.010

    CAS  Google Scholar 

  • Insam H, Domsch KH (1988) Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb Ecol 15:177–188 doi:10.1007/BF02011711

    Google Scholar 

  • Insam H, Haselwandter K (1989) Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79:174–178 doi:10.1007/BF00388474

    Google Scholar 

  • Kaštovská K, Elster J, Stibal M, Šantrůčková H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb Ecol 50:396–407 doi:10.1007/s00248-005-0246-4

    PubMed  Google Scholar 

  • Kato T, Kamijo T, Hatta T, Tamura K, Higashi T (2005) Initial soil formation processes of volcanogenous regosols (Scoriacious) from Miyake-jima Island, Japan. Soil Sci Plant Nutr 51(2):291–301

    CAS  Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143 doi:10.1016/S0169-5347(97)01001-X

    Google Scholar 

  • Kaye JP, Binkley D, Rhoades C (2003) Stable soil nitrogen accumulation and flexible organic matter stoichiometry during primary floodplain succession. Biogeochemistry 63:1–22 doi:10.1023/A:1023317516458

    CAS  Google Scholar 

  • Kuntz MA, Rowley PD, MacLeod NS, Reynolds RL, McBroome LA, Kaplan AM, Lidke DJ (1981) Petrography and particle-size distribution of pyroclastic-flow, ash-cloud, and surge deposits. U S Geol Surv Prof Pap 1250:525–539 Washington

    CAS  Google Scholar 

  • Lipman PW, Norton DR, Taggart JE, Brandt EL, Engleman EE (1981) Compositional variations in 1980 magmatic deposits. U S Geol Surv Prof Pap 1250:631–640

    CAS  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models. SAS Institute, Cary, NC, USA

    Google Scholar 

  • Lovelock CE, Wright SF, Clark DA, Ruess RW (2004a) Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J Ecol 92:278–287 doi:10.1111/j.0022-0477.2004.00855.x

    CAS  Google Scholar 

  • Lovelock CE, Wright SF, Nichols KA (2004b) Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: an example from a tropical rain forest soil. Soil Biol Biochem 36:1009–1012 doi:10.1016/j.soilbio.2004.02.010

    CAS  Google Scholar 

  • Maron JL, Connors PG (1996) A native nitrogen-fixing shrub facilitates weed invasion. Oecologia 105:302–312 doi:10.1007/BF00328732

    Google Scholar 

  • Maron JL, Jefferies RL (1999) Bush lupine mortality, altered resource availability, and alternative vegetation states. Ecology 80:443–454

    Article  Google Scholar 

  • Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Treseder K (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65

    CAS  Google Scholar 

  • Morris WF, Wood DM (1989) The role of lupine in succession on Mount St. Helens: facilitation or inhibition? Ecology 70:697–703 doi:10.2307/1940220

    Google Scholar 

  • Mulvaney RL (1996) Nitrogen—inorganic forms. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnson CT, Sumner ME (eds) Methods of soil analysis. part 3. Chemical methods—SSSA book series no. 5. Soil Science Society of America, Madison WI, pp 1123–1184

    Google Scholar 

  • Nadelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci Soc Am J 52:1633–1640

    Google Scholar 

  • Nadelhoffer KJ, Fry B (1994) Nitrogen isotope studies in forest ecosystems. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific, Boston, MA, pp 22–44

    Google Scholar 

  • Nanzyo M (2002) Unique properties of volcanic ash soils. Glob Environ Res 6:99–112

    CAS  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon and organic matter. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnson CT, Sumner ME (eds) Methods of soil analysis part 3: chemical methods. no 5. in the soil Science Society of America books series. Soil Science Society of America, Madison, WI, USA, pp 961–1010

    Google Scholar 

  • Nichols KA (2003) Characterization of glomalin: a glycoprotein produced by arbuscular mycorrhizal fungi. University of Maryland, College Park, MD

    Google Scholar 

  • Nuhn WW (1987) Soil genesis on the 1980 pyroclastic flows of Mount Saint Helens. Thesis, University of Washington, Seattle

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567 doi:10.1016/0031-9422(81)85134-5

    CAS  Google Scholar 

  • Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe J (1999) Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119:239–246 doi:10.1007/s004420050782

    Google Scholar 

  • Pickart AJ, Miller LM, Duebendorfer TE (1998) Yellow bush lupine invasion in Northern California Coastal Dunes I. Ecological impacts and manual restoration techniques. Restor Ecol 6:59–68 doi:10.1046/j.1526-100x.1998.00618.x

    Google Scholar 

  • Preisser EL, Dugaw CJ, Dennis B, Strong DR (2006) Plant facilitation of a belowground predator. Ecology 87:1116–1123 doi:10.1890/0012-9658(2006)87[1116:PFOABP]2.0.CO;2

    PubMed  Google Scholar 

  • Reganold JP, Palmer AS (1995) Significance of gravimetric versus volumetric measurements of soil quality under biodynamic, conventional, and continuous grass management. J Soil Water Conserv 50:298–305

    Google Scholar 

  • Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291 doi:10.1890/02-0298

    Google Scholar 

  • Rillig MC, Steinberg PD (2002) Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification. Soil Biol Biochem 34:1371 doi:10.1016/S0038-0717(02)00060-3

    CAS  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177 doi:10.1023/A:1010364221169

    CAS  Google Scholar 

  • Rillig MC, Ramsey PW, Morris S, Paul EA (2003) Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 253:293–299 doi:10.1023/A:1024807820579

    CAS  Google Scholar 

  • Rosier CL, Hoye AT, Rillig MC (2006) Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biol Biochem 38:2205–2211 doi:10.1016/j.soilbio.2006.01.021

    CAS  Google Scholar 

  • SAS (1999) SAS OnlineDoc, version 8. SAS Institute, Cary, NC

    Google Scholar 

  • Schipper LA, Degens BP, Sparling GP, Duncan LC (2001) Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biol Biochem 33:2093–2103 doi:10.1016/S0038-0717(01)00142-0

    CAS  Google Scholar 

  • Schlesinger WH, Bruijnzeel LA, Bush MB, Klein EM, Mace KA, Raikes JA, Whittaker RJ (1998) The biogeochemistry of phosphorus after the first century of soil development on Rakata Island, Krakatau, Indonesia. Biogeochemistry 40:37–55 doi:10.1023/A:1005838929706

    CAS  Google Scholar 

  • Scott WE, Hoblitt RP, Torres RC, Self S, Ma Mylene LM, Timoteo NJ (1996) Pyroclastic Flows of the June 15, 1991, climactic eruption of Mount Pinatubo. In: Newhall CG, Punongbayan RS (eds) FIRE and MUD: eruptions and lahars of Mount Pinatubo, Philippines. Philippine Inst Volc Seism, University of Washington Press, Quezon City, Philippines, Seattle, pp 545–570

  • Shearer G, Kohl DH (1993) Natural abundance of 15N: fractional contribution of two sources to a common sink and use of isotope discrimination. In: Knowles R, Blackburn TH (eds) Nitrogen isotope techniques. Academic, New York, pp 89–125

    Google Scholar 

  • Shoji SM, Nanzyo M, Dahlgren RA (1993) Volcanic ash soils. Elsevier, New York, New York

    Google Scholar 

  • Sigler WV, Zeyer J (2002) Microbial diversity and activity along the forefields of two receding glaciers. Microb Ecol 43:397–407 doi:10.1007/s00248-001-0045-5

    PubMed  CAS  Google Scholar 

  • Sims JT (2000a) Soil test phosphorus: Melich 3. In: Pierzynski GM (ed) Methods of phosphorus analysis for soils, sediment, residuals, and waters. Southern Cooperative Series Bulletin 396. North Carolina State University, Raleigh, NC, pp 17–19

    Google Scholar 

  • Sims JT (2000b) Soil test phosphorus: Olsen P. In: Pierzynski GM (ed) Methods of phosphorus analysis for soils, sediment, residuals, and waters. South. Coop. Series Bull. 396. North Carolina State University, Raleigh, NC, pp 20–21

    Google Scholar 

  • Smith JL, Paul EA (1990) The significance of soil microbial biomass estimations. In: Bollag GM, Stotzkey G (eds) Soil biochemistry. Marcel Dekker, New York, N.Y., pp 357–396

    Google Scholar 

  • Smith JL, Schnabel RR, McNeal BL, Campbell GS (1980) Potential errors in the first-order model for estimating soil nitrogen mineralization potentials. Soil Sci Soc Am J 44:996–1000

    CAS  Google Scholar 

  • Smith JL, McNeal BL, Cheng HH, Campbell GS (1986) Calculation of microbial maintenance rates and net nitrogen mineralization in soil at steady state. Soil Sci Soc Am J 50:332–338

    CAS  Google Scholar 

  • Sparling GP (1992) Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Aust J Soil Res 30:195–207 doi:10.1071/SR9920195

    CAS  Google Scholar 

  • Swanson FJ, Major JJ (2005) Physical events, environments, and geological–ecological interactions at Mount St. Helens: March 1980–2004. In: Dale VH, Swanson FJ, Crisafulli CM (eds) Ecological recovery after the 1980 eruptions of Mount St. Helens. Springer, New York, NY, pp 27–43

    Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515 doi:10.1046/j.1469-8137.2002.00470.x

    Google Scholar 

  • Tscherko D, Rustemeier J, Richter A, Wanek W, Kandeler E (2003) Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur J Soil Sci 54:685–696 doi:10.1046/j.1351-0754.2003.0570.x

    Google Scholar 

  • Ugolini FC, Dahlgren RA (2002) Soil development in volcanic ash. Glob Environ Res 6:69–81

    CAS  Google Scholar 

  • Vitousek PM, Matson PA, Van Cleve K (1989) Nitrogen availability and nitrification during succession: Primary, secondary, and old-field seres. Plant Soil 115:229–239 doi:10.1007/BF02202591

    Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57–58:1–45 doi:10.1023/A:1015798428743

    Google Scholar 

  • Walker TW, Syers JK (1976) The fate of P during pedogenesis. Geoderma 15:1–19 doi:10.1016/0016-7061(76)90066-5

    CAS  Google Scholar 

  • Wander MM (2004) Soil organic matter fractions and their relevance to soil function. In: Magdoff F, Weil R (eds) Advances in agroecology. CRC, Boca Raton, FL, pp 67–102

    Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    PubMed  CAS  Google Scholar 

  • Waring SA, Bremner JM (1964) Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature 201:951–952 doi:10.1038/201951a0

    CAS  Google Scholar 

  • West JB, HilleRisLambers J, Lee TD, Hobbie SE, Reich PB (2005) Legume species identity and soil nitrogen supply determine symbiotic nitrogen-fixation responses to elevated atmospheric [CO2]. New Phytol 167:523–530

    PubMed  CAS  Google Scholar 

  • Whiffen LK, Midgley DJ, McGee PA (2007) Polyphenolic compounds interfere with quantification of protein in soil extracts using the Bradford method. Soil Biol Biochem 39:691–694 doi:10.1016/j.soilbio.2006.08.012

    CAS  Google Scholar 

  • Wilson L, Head JW (1981) Morphology and rheology of pyroclastic flows and their deposits, and guidelines for future observations. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, U.S. Geological Survey professional paper 1250. U.S. Geological Survey, Washington, pp 513–524

    Google Scholar 

  • Wood DM, Del Moral R (1988) Colonizing plants on the pumice plains, Mount St. Helens, Washington. Am J Bot 75:1228–1237 doi:10.2307/2444107

    Google Scholar 

  • Wright JP, Jones CG (2004) Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity. Ecology 85:2071–2081 doi:10.1890/02-8018

    Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586 doi:10.1097/00010694-199609000-00003

    CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107 doi:10.1023/A:1004347701584

    CAS  Google Scholar 

  • Wright JP, Gurney WSC, Jones CG (2004) Patch dynamics in a landscape modified by ecosystem engineers. Oikos 105:336–348 doi:10.1111/j.0030-1299.2004.12654.x

    Google Scholar 

  • Zibilske LM (1994) Carbon Mineralization. In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis, part 2. Microbiological and biochemical properties. Soil Science Society of America, Madison WI, pp 835–863

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to numerous individuals from USDA-ARS, Washington State University and SUNY Fredonia for excellent assistance in sample collection and analysis of data including D. Bikfasy, L. and R. Blood, C. Camacho, J. Carvella, E. Peters, T. Robertson, D. Ruckle, R Salakory and P. and J.Titus. Suggestions from R. A. Black, J. Bishop, R. D. Evans, and A J. Franzluebbers, together with comments from several anonymous reviewers significantly improved this work. Dedicated to R. L. Halvorson.

Disclaimer

The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the US Department of Agriculture of any product or service to the exclusion of others that may be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan J. Halvorson.

Additional information

Responsible Editor: Erik A. Hobbie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halvorson, J.J., Smith, J.L. Carbon and nitrogen accumulation and microbial activity in Mount St. Helens pyroclastic substrates after 25 years. Plant Soil 315, 211–228 (2009). https://doi.org/10.1007/s11104-008-9745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9745-7

Keywords

Navigation