Skip to main content
Log in

Ammonium under solution culture alleviates aluminum toxicity in rice and reduces aluminum accumulation in roots compared with nitrate

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Al stress and ammonium–nitrogen nutrition often coexist in acidic soils due to their low pH and weak nitrification ability. Rice is the most Al-resistant species among small grain cereal crops and prefers NH4 + as its major inorganic nitrogen source. This study investigates the effects of NH4 + and NO3 on Al toxicity and Al accumulation in rice, and thereby associates rice Al resistance with its NH4 + preference. Two rice subspecies, indica cv. Yangdao6 and japonica cv. Wuyunjing7, were used in this study. After treatment with or without Al under conditions of varying NH4 + and NO3 supply, rice seedlings were harvested for the determination of root elongation, callose content, biomass, Al concentration and medium pH. The results indicated that Wuyunjing7 was more Al-resistant and NH4 +-preferring than Yangdao6. NH4 + alleviated Al toxicity in two cultivars compared with NO3 . Both NH4 +-Al supply and pretreatment with NH4 + reduced Al accumulation in roots and root tips compared with NO3 . NH4 + decreased but NO3 increased the medium pH, and root tips accumulated more Al with a pH increase from 3.5 to 5.5. Increasing the NO3 concentration enhanced Al accumulation in root tips but increasing the NH4 + concentration had the opposite effect. These results show NH4 + alleviates Al toxicity for rice and reduces Al accumulation in roots compared with NO3 , possibly through medium pH changes and ionic competitive effects. Making use of the protective effect of NH4 +, in which the Al resistance increases, is advised for acidic soils, and the hypothesis that rice Al resistance is associated with the preferred utilization of NH4 + is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alva AK, Edwards DG, Asher CJ, Blamey FPC (1986) Relationships between root length of soybean and calculated activities of aluminum monomers in nutrient solution. Soil Sci Soc Am J 50:959–962

    CAS  Google Scholar 

  • Blamey FPC, Edwards DG, Asher CJ (1983) Effects of aluminum, OH:Al and P:Al molar ratios, and ionic strength on soybean root elongation in solution culture. Soil Sci 136:197–207. doi:10.1097/00010694-198310000-00001

    Article  CAS  Google Scholar 

  • Cançado GMA, Loguercio LL, Martins PR, Parentoni SN, Paiva E, Borém A et al (1999) Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L.). Theor Appl Genet 99:747–754. doi:10.1007/s001220051293

    Article  Google Scholar 

  • Cumming JR (1990) Nitrogen source effects on Al toxicity in nonmycorrhizal and mycorrhizal pitch pine (Pinus rigida) seedlings. II. Nitrate reduction and NO3 - uptake. Can J Bot 68:2653–2659. doi:10.1139/b90-335

    Article  CAS  Google Scholar 

  • Cumming JR, Weinstein LH (1990) Nitrogen source effects Al toxicity in nonmycorrhizal and mycorrhizal pitch pine (Pinus rigida) seedlings. I. Growth and nutrition. Can J Bot 68:2644–2652. doi:10.1139/b90-334

    Article  CAS  Google Scholar 

  • De Boer W, Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866. doi:10.1016/S0038-0717(00)00247-9

    Article  Google Scholar 

  • Degenhardt J, Larsen PB, Howell SH, Kochian LV (1998) Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiol 117:19–27. doi:10.1104/pp.117.1.19

    Article  PubMed  CAS  Google Scholar 

  • Fageria NK, Baligar VC, Wright RJ (1988) Aluminum toxicity in crop plants. J Plant Nutr 11:303–319

    Article  Google Scholar 

  • Fleming AL (1983) Ammonium uptake by wheat varieties differing in Al tolerance. Agron J 75:726–730

    CAS  Google Scholar 

  • Foy CD (1988) Plant adaptation to acid, aluminum-toxic soils. Commun Soil Sci Plant Anal 19:959–987

    Article  CAS  Google Scholar 

  • Grauer UE, Horst WJ (1990) Effect of pH and nitrogen source on aluminium tolerance of rye (Secale cereale L.) and yellow lupin (Lupinus luteus L.). Plant Soil 127:13–21. doi:10.1007/BF00010832

    Article  CAS  Google Scholar 

  • Horst WJ, Püschel AK, Schmohl N (1997) Induction of callose formation is a sensitive marker for genotypic aluminium sensitivity in maize. Plant Soil 192:23–30. doi:10.1023/A:1004204120863

    Article  CAS  Google Scholar 

  • Kinraide TB (1997) Reconsidering the rhizotoxicity of hydroxyl, sulphate, and fluoride complexes of aluminium. J Exp Bot 48:1115–1124. doi:10.1093/jxb/48.5.1115

    Article  CAS  Google Scholar 

  • Kinraide TB (2003) Toxicity factors in acidic forest soils: attempts to evaluate separately the toxic effects of excessive Al3+ and H+ and insufficient Ca2+ and Mg2+ upon root elongation. Eur J Soil Sci 54:323–333. doi:10.1046/j.1365-2389.2003.00538.x

    Article  CAS  Google Scholar 

  • Kinraide TB (2006) Plasma membrane surface potential (yPM) as a determinant of ion bioavailability: a critical analysis of new and published toxicological studies and a simplified method for the computation of plant yPM. Environ Toxicol Chem 25:3188–3198. doi:10.1897/06-103R.1

    Article  PubMed  CAS  Google Scholar 

  • Kinraide TB, Ryan PR, Kochian LV (1992) Interactive effects of Al3+, H+, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol 99:1461–1468

    Article  PubMed  CAS  Google Scholar 

  • Klotz F, Horst WJ (1988) Effect of ammonium- and nitrate-nitrogen nutrition on aluminium tolerance of soybean (Glycine max L.). Plant Soil 111:59–65. doi:10.1007/BF02182037

    Article  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493. doi:10.1146/annurev.arplant.55.031903.141655

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195 doi:10.1007/s11104-004-1158-7

    Article  CAS  Google Scholar 

  • Köhle H, Jeblick W, Poten F, Blaschek W, Kauss H (1985) Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiol 77:544–551

    Article  PubMed  Google Scholar 

  • Ma JF, Nagao S, Huang CF, Nishimura M (2005) Isolation and characterization of a rice mutant hypersensitive to Al. Plant Cell Physiol 46:1054–1061. doi:10.1093/pcp/pci116

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Shen RF, Zhao ZQ, Wissuwa M, Takeuchi Y, Ebitani T et al (2002) Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol 43:652–659. doi:10.1093/pcp/pcf081

    Article  PubMed  CAS  Google Scholar 

  • McCain S, Davies MS (1983) The influence of background solution on root responses to aluminium in Holcus lanatus L. Plant Soil 73:425–430. doi:10.1007/BF02184320

    Article  CAS  Google Scholar 

  • McGrath SP, Rorison IH (1982) The influence of nitrogen source on the tolerance of holcus lanatus L. and bromus erectus huds. to manganese. New Phytol 91:443–452. doi:10.1111/j.1469-8137.1982.tb03323.x

    Article  CAS  Google Scholar 

  • Nichol BE, Oliveira LA, Glass ADM, Siddiqi MY (1993) The effects of aluminum on the influx of calcium, potassium, ammonium, nitrate, and phosphate in an aluminum-sensitive cultivar of barley (Hordeum vulgare L.). Plant Physiol 101:1263–1266

    PubMed  CAS  Google Scholar 

  • Nye PH (1981) Changes of pH across the rhizosphere induced by roots. Plant Soil 61:7–26. doi:10.1007/BF02277359

    Article  CAS  Google Scholar 

  • Ownby JD (1993) Mechanisms of reaction of hematoxylin with aluminium-treated wheat roots. Physiol Plant 87:371–380. doi:10.1111/j.1399-3054.1993.tb01744.x

    Article  CAS  Google Scholar 

  • Parker DR, Norvell WA, Chaney RL (1995) GEOCHEM-PC: a chemical speciation program for IBM and compatible personal computers. In: Loeppert RH, Schwab AP, Goldberg S (eds) Chemical equilibrium and reaction models. SSSA Spec. Publ. 42. ASA and SSSA, Madison, WI, pp 253–269

    Google Scholar 

  • Rorison IH (1985) Nitrogen source and the tolerance of Deschampsia flexuosa, Holcus lanatus and Bromus erectus to aluminium during seedling growth. J Ecol 73:83–90. doi:10.2307/2259770

    Article  CAS  Google Scholar 

  • Ryan PR, DiTomaso JM, Kochian LV (1993) Aluminum toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446. doi:10.1093/jxb/44.2.437

    Article  CAS  Google Scholar 

  • Schier GA, McQuattie CJ (1999) Effect of nitrogen source on aluminum toxicity in nonmycorrhizal and ectomycorrhizal pitch pine seedling. J Plant Nutr 22:951–965

    Article  CAS  Google Scholar 

  • Shen TC (1969) Induction of nitrate reductase and the preferential assimilation of ammonium in germinating rice seedlings. Plant Physiol 44:1650–1655

    Article  PubMed  CAS  Google Scholar 

  • Smiley RW (1974) Rhizosphere pH as influenced by plants, soils and nitrogen fertilizers. Soil Sci Soc Am J 38:795–799

    CAS  Google Scholar 

  • Ta TC, Michio T, Kinkichi K (1981) Comparative study on the response of Indica and Japonica rice plants to ammonium and nitrate nitrogen. Soil Sci Plant Nutr 27:83–92

    Google Scholar 

  • Ta TC, Ohira K (1981) Effects of various environmental and medium conditions on the response of Indica and Japonica rice plants to ammonium and nitrate nitrogen. Soil Sci Plant Nutr 27:347–355

    CAS  Google Scholar 

  • Tadao W, Yuji E (1985) Effect of pH on ionic species of aluminum in medium and on aluminum toxicity under solution culture. Soil Sci Plant Nutr 31:547–561

    Google Scholar 

  • Tan K, Keltjens WG, Findenegg GR (1992) Effect of nitrogen form on aluminum toxicity in sorghum genotypes. J Plant Nutr 15:1383–1394

    Article  CAS  Google Scholar 

  • Tanaka A, Tadano T, Yamamoto K, Kanamura N (1987) Comparison of toxicity to plants among Al3+, AlSO4 + and Al-F complex ions. Soil Sci Plant Nutr 33:43–55

    CAS  Google Scholar 

  • Taylor GJ (1988) Mechanisms of aluminum tolerance in Triticum aestivum (wheat). V. Nitrogen nutrition, plant-induced pH and tolerance to aluminum; correlation without causality? Can J Bot 66:694–699

    Article  CAS  Google Scholar 

  • Taylor GJ, Foy CD (1985a) Mechanisms of aluminum tolerance in Triticum aestivum L. (wheat). I. Differential pH induced by winter cultivars in nutrient solutions. Am J Bot 72:695–701. doi:10.2307/2443681

    Article  CAS  Google Scholar 

  • Taylor GJ, Foy CD (1985b) Mechanisms of aluminum tolerance in Triticum aestivum L. (wheat). II. Differential pH induced by spring cultivars in nutrient solutions. Am J Bot 72:702–706. doi:10.2307/2443682

    Article  CAS  Google Scholar 

  • Taylor GJ, Foy CD (1985c) Mechanisms of aluminum tolerance in Triticum aestivum (wheat). IV. The role of ammonium and nitrate nutrition. Can J Bot 63:2181–2186

    Article  CAS  Google Scholar 

  • Taylor GJ (1991) Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top Plant Biochem Physiol 10:57–93

    CAS  Google Scholar 

  • Troelstra SR, van Dijk K, Blacquière T (1985) Effects of N source on proton excretion, ionic balance, and growth of Alnus glutinosa (L.) Gaertner: comparison of N2 fixation with single and mixed sources of NO3 and NH4. Plant Soil 84:361–385. doi:10.1007/BF02275475

    Article  CAS  Google Scholar 

  • Wang MY, Siddiqi MY, Ruth TJ, Glass ADM (1993) Ammonium uptake by rice roots. (I. Fluxes and subcellular distribution of 13NH4 +). Plant Physiol 103:1249–1258. doi:10.1104/pp.103.4.1463

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Osaki M, Tadano T (1998) Effects of nitrogen source and aluminum on growth of tropical tree seedlings adapted to low pH soils. Soil Sci Plant Nutr 44:655–666

    CAS  Google Scholar 

  • Wu P, Liao CY, Hu B, Yi KK, Jin WZ, Ni JJ et al (2000) QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theor Appl Genet 100:1295–1303. doi:10.1007/s001220051438

    Article  CAS  Google Scholar 

  • Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P et al (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol 146:602–611. doi:10.1104/pp.107.111989

    Article  PubMed  CAS  Google Scholar 

  • Yang JL, Zheng SJ, He YF, Matsumoto H (2005) Aluminium resistance requires resistance to acid stress: a case study with spinach that exudes oxalate rapidly when exposed to Al stress. J Exp Bot 56:1197–1203. doi:10.1093/jxb/eri113

    Article  PubMed  CAS  Google Scholar 

  • You JF, He YF, Yang JL, Zheng SJ (2005) A comparison of aluminum resistance among Polygonum species originating on strongly acidic and neutral soils. Plant Soil 276:143–151. doi:10.1007/s11104-005-3786-y

    Article  CAS  Google Scholar 

  • Zhao XQ, Shi WM (2006) Expression analysis of the glutamine synthetase and glutamate synthase gene families in young rice (Oryza sativa) seedlings. Plant Sci 170:748–754. doi:10.1016/j.plantsci.2005.11.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This investigation was financially supported by a grant from the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-YW-N-002) and the Funds for Creative Research Groups of the National Natural Science Foundation of China (No. 40621001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren Fang Shen.

Additional information

Responsible Editor: Thomas B. Kinraide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X.Q., Shen, R.F. & Sun, Q.B. Ammonium under solution culture alleviates aluminum toxicity in rice and reduces aluminum accumulation in roots compared with nitrate. Plant Soil 315, 107–121 (2009). https://doi.org/10.1007/s11104-008-9736-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9736-8

Keywords

Navigation