Skip to main content

Advertisement

Log in

The ecological significance of the coarse soil fraction for Picea abies (L.) Karst. seedling nutrition

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Recent studies showed that the coarse fraction of soils can have a considerable stock of short-term available nutrients. However, a direct proof that coarse soil fragments have significant nutritional functions in forest ecosystems is missing. In a 23 week microcosm experiment with controlled in- and output, mycorrhizal (Laccaria bicolor S238N) and non-mycorrhizal Norway spruce seedlings (Picea abies (L.) Karst.) were grown on either coarse soil fragments (dark paragneiss, Black Forest, S-W Germany) or quartz only. The microcosms were irrigated with a solution adjusted to the mean ionic composition of the soil solution in the reference profile, but devoid of Ca and Mg. The uptake rates of Ca and Mg by spruce seedlings were sufficient to allow normal root and shoot growth. Mycorrhization was low and did not have a significant influence on seedling nutrition. The oxalic anion was found in concentrations below 1.5 mg L−1 in the leachate, approximately corresponding to a C2O4 2−-saturation in equilibrium with precipitated calcium oxalate. Cation budgets and relationships among the cation species suggest that exchange processes were the main trigger of Ca and Mg mobilisation and uptake rather than protolytic weathering by exudation of carboxylic acids. The exchange processes may be attributed to weathering cracks filled with fine material of high base saturation. Therefore it is concluded that the short-term nutritional functions of coarse soils in forest sites are significant, and exchange mechanisms in the “stone protected fine earth” are in principal the same as they are known for the “free fine earth”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arocena AJ, Glowa KR (2000) Mineral weathering in ectomycorrhizosphere of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) as revealed by soil solution composition. Forest Ecol Manag 133:61–70

    Article  Google Scholar 

  • Balogh-Brunstad Z, Keller CK, Bormann BT, O’Brien R, Wang D, Hawley G (2008) Chemical weathering and chemical denudation dynamics through ecosystem development and disturbance. Glob Biogeochem Cycles, DOI 10.1029/2007GB002957

  • Blum JD, Klaue A, Nezat CA, Driscoll CT, Johnson CE, Siccama TG, Eagar C, Fahey TJ, Likens GE (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417:729–731

    Article  PubMed  CAS  Google Scholar 

  • Bormann BT, Wang D, Bormann FH, Benoit G, April R, Snyder MC (1998) Rapid, plant-induced weathering in an aggrading experimental ecosystem. Biogeochemistry 43:129–155

    Article  CAS  Google Scholar 

  • Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft (2005) Handbuch Forstliche Analytik (Grundwerk 2005). Gutachterausschuss Forstliche Analytik pp 88

  • Buscott F, Weber G, Oberwinkel F (1992) Interactions between Cylindrocarpon destructans and ectomycorrhizas of Picea abies with Laccaria laccata and Paxillus involutus. Trees 6:83–90

    Article  Google Scholar 

  • Calvaruso C, Turpault M-P, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbio 72:1258–1266

    Article  CAS  Google Scholar 

  • Calvaruso C, Turpault M-P, Leclerc E, Frey-Klett P (2007) Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microb Ecol 54:567–577

    Article  PubMed  Google Scholar 

  • Casarin V, Plassard C, Souche G, Arvieu J-C (2003) Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil. Agronomie 23:461–469

    Article  CAS  Google Scholar 

  • Certini G, Campbell CD, Edwards AC (2004) Rock fragments in soil support a different microbial community from the fine earth. Soil Biol Biochem 36:1119–1128

    Article  CAS  Google Scholar 

  • Coroneos C, Hinsinger P, Gilkes RJ (1996) Granite powder as a source of potassium for plants: a glasshouse bioassay comparing two pasture species. Fertil Res 45:143–152

    Article  Google Scholar 

  • Corrêa A, Strasser RJ, Martins-Loução MA (2006) Are mycorrhiza always beneficial? Plant Soil 279:65–73

    Article  CAS  Google Scholar 

  • Corti G, Agnelli A, Ugolini FC (1997) Release of Al by hydroxy-interlayered vermiculite and hydroxy-interlayered smectite during determination of cation exchange capacity in fine earth and rock fragments fractions. Eur J Soil Sci 48:249–262

    Article  CAS  Google Scholar 

  • Corti G, Ugolini FC, Agnelli A (1998) Classing the soil skeleton (greater than two millimeters): proposed approach and procedure. Soil Sci Soc Am J 62:1620–1629

    CAS  Google Scholar 

  • Corti G, Ugolini F, Agnelli A, Certini G, Cuniglio R (2002) The soil skeleton, a forgotten pool of carbon and nitrogen in soil. Eur J Soil Sci 53:283–298

    Article  Google Scholar 

  • Deutschmann G, Ludwig B (2000) Exchangeable cations in rock fractions and fine earth in soil profiles of different genesis. J Plant Nutr Soil Sc 163:183–189

    Article  CAS  Google Scholar 

  • Drever JI, Murphy KM, Clow DW (1994) Field weathering rates versus laboratory dissolution rates: an update. In: Harte B (ed) V. M. Goldschmidt Conference; extended abstracts: Mineralogical Magazine 58A (A-K) pp 239–240

  • Duponnois R, Garbaye J (1991) Techniques for controlled synthesis of the Doulas-fir–Laccaria laccata ectomycorrhizal symbiosis. Ann Sci For 48:641–650

    Article  Google Scholar 

  • Eltrop L, Marschner H (1996) Growth and mineral nutrition of non-mycorrhizal and mycorrhizal Norway spruce (Picea abies) seedlings grown in semi-hydroponic sand culture I. Growth and mineral nutrient uptake in plants supplied with different forms of nitrogen. New Phytol 133:468–478

    Google Scholar 

  • Glowa KR, Arocena JM, Massicotte HB (2003) Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiol J 20:99–111

    Article  CAS  Google Scholar 

  • Göttlein A, Blasek R (1996) Analysis of small volumes of soil solution by capillary electrophoresis. Soil Sci 161:705–715

    Article  Google Scholar 

  • Heisner U, Raber B, Hildebrand EE (2004) The importance of the soil skeleton for plant-available nutrients in sites of the Southern Black Forest, Germany. Eur J For. Res 123:249–257

    CAS  Google Scholar 

  • Hildebrand EE, Schack-Kirchner H (2000) Initial effects of lime and rock powder application on soil solution chemistry in a dystric cambisol – results of model experiments. Nutr Cycl Agroecosys 56:69–78

    Article  Google Scholar 

  • Hinsinger P, Jaillard B (1993) Root-induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. J Soil Sci 44:525–534

    Article  CAS  Google Scholar 

  • Hinsinger P, Elsass F, Jaillard B, Robert M (1993) Root-induced irreversible transformation of a trioctrahedral mica in the rhizosphere of rape. J Soil Sci 44:535–545

    Article  CAS  Google Scholar 

  • Hinsinger P, Bolland MDA, Gilkes RJ (1996) Silicate rock powder: effect on selected chemical properties of a range of soils from Western Australia and on plant growth as assessed in a glasshouse experiment. Fertil Res 45:69–79

    Article  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behavior in soils – misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Jongmans AG, van Breemen N, Lundström U, van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud P-A, Olsson M (1997) Rock-eating fungi. Nature 389:682–683

    Article  CAS  Google Scholar 

  • Kohler M, Hildebrand EE (2004) New aspects of element cycling and forest nutrition. In: Anderson F, Birot Y, Pävinen R (eds) Towards the sustainable use of Europe’s forests, EFI Proceedings 49. EFI, Joensuu, pp 171–180

    Google Scholar 

  • Kohler M, Wilpert KV, Hildebrand EE (2000) The soil skeleton as a source for the short-term supply of “base cations” in forest soils of the Black Forest (Germany). Water Air Soil Poll 122:37–48

    Article  CAS  Google Scholar 

  • Kohler M, Wolfsfeld N, Hildebrand EE (2003) Steine im Waldboden: “Hot Spots” der Nährelementaufnahme? Biologie in unserer Zeit 33:252–256

    Article  Google Scholar 

  • Kottke I, Guttenberger R, Hampp M, Oberwinkler F (1987) An in vitro method for establishing mycorrhizae on coniferous tree seedlings. Trees 1:191–194

    Article  Google Scholar 

  • Kreisel H, Schauer F (1987) Methoden des mykologischen Laboratoriums. Gustav Fisher Verlag, Stuttgart and New York, p 181

    Google Scholar 

  • Landeweert R (2003) Ectomycorrhizal fungi – molecular tools to study species and functional diversity. Ph.D Thesis, University of Wageningen pp 136

  • Landeweert R, Hoffland E, Finlay R, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  PubMed  Google Scholar 

  • Leyval C, Berthelin J (1989) Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: influence on P, K, Mg, and Fe mobilization from minerals and plant growth. Plant Soil 117:103–110

    Article  CAS  Google Scholar 

  • Leyval C, Berthelin J (1991) Weathering of a mica by roots and rhizospheric microorganisms of pine. Soil Sci Soc Am J 55:1009–1016

    CAS  Google Scholar 

  • Leyval C, Berthelin J (1993) Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biol Fertil Soils 15:259–267

    Article  CAS  Google Scholar 

  • Marschner H, Römheld V, Horst WJ, Martin P (1986) Root-induced changes in the rhizosphere: Importance for the mineral nutrition of plants. Z Pflanzenernähr Bodenkd 149:441–456

    Article  CAS  Google Scholar 

  • Martín-García JM, Delgado G, Párraga JF, Gámiz E, Delgado R (1999) Chemical, mineralogical and (micro)morphological study of coarse fragments in Mediterranean red soils. Geoderma 90:23–47

    Article  Google Scholar 

  • Matzner E, Ulrich B (1985) Implications of the chemical soil conditions for forest decline. Cell Mol Life Sci 41:578–584

    Article  Google Scholar 

  • Meiwes KJ, Khanna PK, Ulrich B (1986) Parameters for describing soil acidification and their relevance to the stability of forest ecosystems. For Ecol Manag 15:161–179

    Article  CAS  Google Scholar 

  • Niebes JF, Dufey JE, Jallaird B, Hinsinger P (1993) Release of non exchangeable potassium from different size fractions of two highly K-fertilized soils in the rhizosphere of rape (Brassica napus cv Drakkar). Plant Soil 155/156:403–406

    Article  Google Scholar 

  • Oehler F (2006) Key factors determining the distribution of fungal hyphae in forest soils. Ph.D thesis Albert-Ludwigs Universität Freiburg pp 137

  • Paris F, Bonnaud P, Ranger J, Robert M, Lapeyrie F (1995a) Weathering of ammonium- or calcium- saturated 2:1 phyllosilicates by ectomycorrhizal fungi in vitro. Soil Biol Biochem 27:1237–1244

    Article  CAS  Google Scholar 

  • Paris F, Bonnaud P, Ranger J, Lapeyrie F (1995b) In vitro weathering of phlogopite by ectomycorrhizal fungi I. Effect of K+ and Mg2+ deficiency on phyllosilicate evolution. Plant Soil 177:191–201

    Article  CAS  Google Scholar 

  • Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi II. The effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and HA. Plant Soil 179:141–150

    Article  CAS  Google Scholar 

  • Raber B, Hildebrand EE (2005) Lebende Steine – Grobboden als Nährelementquelle und Lebensraum für Pilze. Mitt Dtsch Bodenkdl Ges 107:175–176

    Google Scholar 

  • Rivard R, de Kimpe CR (1980) Propriétés de quelques sols riches en graviers dans la région de Québec. Can J Soil Sci 60:263–273

    Article  Google Scholar 

  • SAS InstituteInc (2003) SAS OnlineDoc® 9.1.

  • Schack-Kirchner H, Wilpert K, Hildebrand EE (2000) The spatial distribution of soil hyphae in structured spruce forest soils. Plant Soil 224:195–205

    Article  CAS  Google Scholar 

  • Scheffer F, Schachtschabel P (2002) Lehrbuch der bodenkunde. Spektrum Akademischer Verlag, Heidelberg, p 593

    Google Scholar 

  • Schenck NC (1991) Methods and principles of mycorrhizal research. APS, St. Paul Minnesota, p 244

    Google Scholar 

  • Setälä H (2000) Reciprocal interactions between Scots pine and soil food web structure in the presence and absence of ectomycorrhiza. Oecologia 125:109–118

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San Diego, p 605

    Google Scholar 

  • Smits MM, Hoffland E, Jongmans AG, van Breemen N (2005) Contribution of mineral tunneling to total feldspar weathering. Geoderma 125:59–69

    Article  CAS  Google Scholar 

  • Sverdrup H (1990) The kinetics of base cation release due to primary silicate weathering. Lund University Press, Lund, p 246

    Google Scholar 

  • Tennant D (1975) A test of a modified line intersect method of estimating root length. J Ecol 63:995–1001

    Article  Google Scholar 

  • Ugolini FC, Corti G, Agnelli A, Piccardi F (1996) Mineralogical, physical, and chemical properties of rock fragments in soil. Soil Sci 161:521–542

    Article  CAS  Google Scholar 

  • Ugolini FC, Corti G, Dufey JE, Agnelli A, Certini G (2001) Exchangeable Ca, Mg and K of rock fragments and fine earth from sandstone and siltstone derived soils and their availability to grass. J Plant Nutr Soil Sci 164:309–315

    Article  CAS  Google Scholar 

  • van Breemen N, Finlay R, Lundström U, Jongmans AG, Giesler R, Olsson M (2000) Mycorrhizal weathering: A true case of mineral plant nutrition? Biogeochemistry 49:53–67

    Article  Google Scholar 

  • van Grinsven JJM, van Riemsdijk WH (1992) Evaluation of batch and column techniques to measure weathering rates in soils. Geoderma 52:41–57

    Article  Google Scholar 

  • van Schöll L, Keltjens WG, Hoffland E, van Breemen N (2005) Effect of ectomycorrhizal colonization on the uptake of Ca, Mg and Al by Pinus sylvestris under aluminium toxicity. For Ecol Manag 215:352–360

    Article  Google Scholar 

  • van Schöll L, Hoffland E, van Breemen N (2006) Organic anion exudation by ectomycorrhizal fungi and Pinus sylvestris in response to nutrient deficiencies. New Phytol 170:153–163

    Article  PubMed  CAS  Google Scholar 

  • Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi from two different soils. Plant Soil 218:249–256

    Article  CAS  Google Scholar 

  • Wallander H, Hagerberg D (2004) Do ectomycorrhizal fungi have a significant role in weathering of minerals in forest soil? Symbiosis 37:249–257

    CAS  Google Scholar 

  • Wallander H, Wickman T (1999) Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9:25–32

    Article  CAS  Google Scholar 

  • Wallander H, Wickman T, Jacks G (1997) Apatite as a P source in mycorrhizal and non-mycorrhizal Pinus sylvestris. Plant Soil 196:123–131

    Article  CAS  Google Scholar 

  • Wang JG, Zhang FS, Cao YP, Zhang XL (2000) Effect of plant types on release of mineral potassium from gneiss. Nutr Cycl Agroecosyst 56:37–44

    Article  Google Scholar 

  • Warfvinge P, Falkengren-Grerup U, Sverdrup H (1993) Modelling long-term cation supply in acidified forest stands. Environ Pollut 80:209–221

    Article  PubMed  CAS  Google Scholar 

  • Westergaard B, Hansen HCB, Borggaard OK (1998) Determination of anions in soil solutions by capillary zone electrophoresis. The Analyst 123:721–724

    Article  CAS  Google Scholar 

  • White AF, Brantley SL (2003) The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem Geol 202:479–506

    Article  CAS  Google Scholar 

  • Wilpert K, Kohler M, Zirlewagen D (2000) To what extend can silviculture enhance sustainability of forest sites under the immission regime in Central Europe. Water Air Soil Pollut 122:105–120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the German Research Foundation (Deutsche Forschungsgemeinschaft) for funding this project, Dr. B. Metzler and G. Seiffert at the FVA-Freiburg for helping with the plant and fungus growth, M-P. Turpault at INRA-Nancy for providing SEM facilities, P. Wiedemer and B. Pöschl for laboratory analyses and tending the experiment, and Dr. P. Hinsinger and three reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Koele.

Additional information

Responsible Editor: Philippe Hinsinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koele, N., Hildebrand, E.E. The ecological significance of the coarse soil fraction for Picea abies (L.) Karst. seedling nutrition. Plant Soil 312, 163–174 (2008). https://doi.org/10.1007/s11104-008-9654-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9654-9

Keywords

Navigation