Skip to main content
Log in

Distinctive effects of cadmium on glucosinolate profiles in Cd hyperaccumulator Thlaspi praecox and non-hyperaccumulator Thlaspi arvense

  • ORIGINAL PAPER
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The influence of Cd on growth, Cd accumulation and glucosinolate (GS) contents was investigated in Thlaspi praecox in comparison to Thlaspi arvense. Accumulation of up to 2,700 μg Cd g-1 dry weight in shoots of T. praecox, growing in nutrient solution with 50 μM Cd without growth inhibition, confirmed this species as a Cd-hyperaccumulator. Cadmium increased the level of total GS in T. praecox without a statistically significant influence on total sulphur. This increase in GS was due to the enhancement of benzyl-GS, mainly sinalbin. In the Cd sensitive T. arvense Cd caused a shift from alkenyl-GS, mainly sinigrin, to indolyl-GS. The Cd-induced increase of total GS in T. praecox indicates that in this species Cd hyperaccumulation is not linked to trade-off of organic defences. The distinctive influence of Cd on GS profiles in Cd-sensitive T. arvense and Cd-tolerant T. praecox favouring indolyl-GS and benzyl-GS, respectively, is discussed in relation to jasmonate and salicylate as possible key molecules in Cd-stress transduction in these contrasting Thlaspi species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GS:

Glucosinolate

References

  • Assunçao AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, USA, pp85–107

    Google Scholar 

  • Behmer ST, Lloyd CM, Raubenheimer D, Stewart-Clark J, Knight J, Leighton RS, Harper FA, Smith JAC (2005) Metal hyperaccumulation in plants: mechanisms of defence against insect herbivores. Funct Ecol 19:55–66

    Article  Google Scholar 

  • Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator Thlaspi caerulescens. Biotechnol Bioeng 83:158–167

    Article  PubMed  CAS  Google Scholar 

  • Boyd RS, Martens SN (1998) Nickel hyperaccumulation by Thlaspi montanum var. montanum (Brassicaceae) a constitutive trait. Am J Bot 85:259–265

    Article  CAS  Google Scholar 

  • Brader G, Mikkelsen MD, Halkier BA, Palva ET (2006) Altering glucosinolate profiles modulates disease resistance in plants. Plant J 46:758–767

    Article  PubMed  CAS  Google Scholar 

  • Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJM (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch C 60:190–198

    PubMed  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  PubMed  CAS  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  PubMed  CAS  Google Scholar 

  • Ghoshroy S, Freedman K, Lartey R, Citovsky V (1998) Inhibition of plant viral systemic infection by non-toxic concentrations of cadmium. Plant J 13:591–602

    Article  PubMed  CAS  Google Scholar 

  • Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJM, Whiting SN, May ST, Broadley MR (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170:239–260

    Article  PubMed  CAS  Google Scholar 

  • Howden R, Andersen CR, Goldsbrough PB, Cobbett CS (1995) Cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107:1067–1073

    Article  PubMed  CAS  Google Scholar 

  • Jiang RF, Ma DY, Zhao FJ, McGrath SP (2005) Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytol 167:805–813

    Article  PubMed  CAS  Google Scholar 

  • Jhee EM, Boyd RS, Eubanks MD (2006a) Effectiveness of metal-metal and metal-organic compound combinations against Plutella xylostella: Implications for plant elemental defense. J Chem Ecol 32:239–259

    Article  CAS  Google Scholar 

  • Jhee EM, Boyd RS, Eubanks MD, Davis MA (2006b) Nickel hyperaccumulation by Streptanthus polygaloides protects against the folivore Plutella xylostella (Lepidoptera: Plutellidae). Plant Ecol 183:91–104

    Article  Google Scholar 

  • Jost R, Altschmied L, Bloem E, Bogs J, Gershenzon J, Hahnel U, Hansch R, Hartmann T, Kopriva S, Kruse C, Mendel RR, Papenbrock J, Reichelt M, Rennenberg H, Schnug E, Schmidt A, Textor S, Tokuhisa J, Wachter A, Wirtz M, Rausch T, Hell R (2005) Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulphur related pathways in Arabidopsis thaliana. Photosynth Res 86:491–508

    Article  PubMed  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20

    Article  CAS  Google Scholar 

  • Martens SN, Boyd RS (1994) The ecological significance of nickel hyperaccumulation—a plant-chemical defense. Oecologia 98:379–384

    Article  Google Scholar 

  • McGrath SP, Lombi E, Zhao FJ (2001) What’s new about cadmium hyperaccumulation? Commentary. New Phytol 149:2–3

    Article  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Article  PubMed  CAS  Google Scholar 

  • Mewis I, Apple HM, Hom A, Raina R, Schultz JC (2005) Major signalling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem feeding and chewing insects. Plant Physiol 138:1149–1162

    Article  PubMed  CAS  Google Scholar 

  • Mittra B, Ghosh P, Henry SL, Mishra J, Das TK, Ghosh S, Babu CR, Mohanty P (2004) Novel mode of resistance to Fusarium infection by a mild dose pre-exposure of cadmium in wheat. Plant Physiol Biochem 42:781–787

    Article  PubMed  CAS  Google Scholar 

  • Noret N, Meerts P, Tolrà R, Poschenrieder C, Barceló J, Escarré J (2005) Palatability of Thlaspi caerulescens for snails: influence of zinc and glucosinolates. New Phytol 165:763–772

    Article  PubMed  CAS  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Mamoudian M, Lahner B, Reeves RD, Murphy AS, Salt DE (2003) Identifying model hyperaccumulator plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. New Phytol 159:421–430

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  PubMed  CAS  Google Scholar 

  • Pollard AJ, Baker AJM (1997) Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). New Phytol 135:655–658

    Article  CAS  Google Scholar 

  • Poschenrieder C, Tolrà R, Barceló J (2006a) Can metals defend plants against biotic stress? Trends Plant Sci 11:288–295

    Article  CAS  Google Scholar 

  • Poschenrieder C, Tolrà R, Barceló J (2006b) Interactions between metal ion toxicity and defences against biotic stress: glucosinolates and benzoxazinoids as case studies. Forest Snow Landscape Res 80(2) (in press)

  • Puschenreiter M, Schnepf A, Millan IM, Fitz WJ, Horak O, Klepp J, Schrefl T, Lombi E, Wenzel WW (2005) Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense. Plant Soil 271:205–218

    Article  CAS  Google Scholar 

  • Roosens N, Verbruggen N, Meerts P, Ximenez-Embun P, Smith JAC (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant Cell Environ 26:1657–1672

    Article  CAS  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2003) The role of phytochelatins in constitutive and adaptative heavy metal tolerances in hyperaccumulator and non-accumulator metallophytes. J Exp Bot 53:2381–2392

    Article  CAS  Google Scholar 

  • Tolrà R, Poschenrieder C, Barceló J (1996) Zinc hyperaccumulation in Thlaspi caerulescens. 1. Influence on growth and mineral nutrition. J Plant Nutr 19:1531–1540

    Article  Google Scholar 

  • Tolrà R, Alonso R, Poschenrieder C, Barceló D, Barceló J (2000) Determination of glucosinolates in rapeseed and Thlaspi caerulescens plants by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 889:75–81

    Article  PubMed  Google Scholar 

  • Vogel-Mikuš K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242

    Article  PubMed  CAS  Google Scholar 

  • Vogel-Mikuš K, Pongrac P, Kump P, Necemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371

    Article  PubMed  CAS  Google Scholar 

  • Wenzel WW, Jocker F (1999) Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environ Pollut 104:145–155

    Article  CAS  Google Scholar 

  • Xiang CB, Oliver BJ (1998) Glutathione metabolic genes co-ordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Spanish and Catalonian Governments (DGICYT, BFU 2004-02237-CO2-01 and Grup de Recerca 2005GR 0078). The grant by COST Action 859 to P. Pongrac for her research stay at the Autonomous University of Barcelona is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Poschenrieder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolrà, R., Pongrac, P., Poschenrieder, C. et al. Distinctive effects of cadmium on glucosinolate profiles in Cd hyperaccumulator Thlaspi praecox and non-hyperaccumulator Thlaspi arvense . Plant Soil 288, 333–341 (2006). https://doi.org/10.1007/s11104-006-9124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-006-9124-1

Keywords

Navigation