Skip to main content
Log in

Combination analysis of single-molecule long-read and Illumina sequencing provides insights into the anthocyanin accumulation mechanism in an ornamental grass, Pennisetum setaceum cv. Rubrum

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Combination analysis of single-molecule long-read and Illumina sequencing provide full-length transcriptome information and shed new light on the anthocyanin accumulation mechanism of Pennisetum setaceum cv. ‘Rubrum’.

Abstract

Pennisetum setaceum cv. ‘Rubrum’ is an ornamental grass with purple leaves widely used in landscaping. However, the current next-generation sequencing (NGS) transcriptome information of this species is not satisfactory due to the difficulties in obtaining full-length transcripts. Furthermore, the molecular mechanisms of anthocyanin accumulation in P. setaceum have not been thoroughly studied. In this study, we used PacBio full-length transcriptome sequencing (SMRT) combined with NGS technology to build and improve the transcriptomic datasets and reveal the molecular mechanism of anthocyanin accumulation in P. setaceum cv. ‘Rubrum’. Therefore, 280,413 full-length non-chimeric reads sequences were obtained using the SMRT technology. We obtained 97,450 high-quality non-redundant transcripts and identified 5352 alternative splicing events. In addition, 93,066 open reading frames (ORFs), including 57,457 full ORFs and 2910 long non-coding RNA (lncRNAs) were screened out. Furthermore, 10,795 differentially expressed genes were identified using NGS. We also explored key genes, synthesis pathways, and detected lncRNA involved in anthocyanin accumulation, providing new insights into anthocyanin accumulation in P. setaceum cv. ‘Rubrum’. To our best knowledge, we provided the full-length transcriptome information of P. setaceum cv. ‘Rubrum’ for the first time. The results of this study will provide baseline information for gene function studies and pave the way for future P. setaceum cv. ‘Rubrum’ breeding projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The PacBio and Illumina sequencing data used in this study has been submitted to the BioProject database of National Center for Biotechnology Information (PRJNA741859, https://dataview.ncbi.nlm.nih.gov/object/PRJNA744323?reviewer=ivb94nq6f5qteehsn84kakpmo; PRJNA744323 https://dataview.ncbi.nlm.nih.gov/object/PRJNA741859?reviewer=14da3so0n8gbcig59abfjr5fh7).

Abbreviations

ANS:

Anthocyanidin synthase

AS:

Alternative splicing events

CCS:

Circular consensus

CDS:

Putative coding sequences

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

COG:

Cluster of orthologous groups

DEGs:

Differentially expressed genes

DETs:

Differentially expressed transcripts

DFR:

Dihydroflavonol 4-reductase

F3H  :

Flavonoid 3-hydroxylase

 F3'H:

Flavonoid 3′-hydroxylase

 FLNC:

Full-length non-chimeric reads

FPKM:

Fragments per kilobase of transcript per million fragments

GO:

Gene ontology

HQ:

High quality isoforms

ICE:

Iterative isoform-clustering program

KEGG:

Kyoto encyclopedia of genes and genomes

LncRNA:

Long non-coding RNA

LQ:

Low quality isoforms

NFL:

Non-full-length

NGS:

Next generation sequencing

NR:

NCBI non-redundant protein databases

ORF:

Open reading frame

ROI:

Reads of insert

SMRT:

PacBio single-molecule long-read sequencing technology

TFs:

Transcription factors

UFGT:

Anthocyanidin 3-glycosyltransferase

References

  • An J, Xu R, Liu X, Zhang J, Wang X, You C, Hao Y (2021) Jasmonate induces biosynthesis of anthocyanin and proanthocyanidin in apple by mediating the JAZ1-TRB1-MYB9 complex. Plant J 106(5):1414–1430

    Article  CAS  PubMed  Google Scholar 

  • Beckwith AG, Zhang Y, Seeram NP, Cameron CA, Nair MG (2004) Relationship of light quantity and anthocyanin production in Pennisetum setaceum Cvs. rubrum and red riding hood. J Agric Food Chem 52(3):456–461

  • Bella S, D’Urso V (2012) First record in the Mediterranean basin of the alien leafhopper Balclutha brevis living on invasive Pennisetum setaceum. Bull Insectol 65(2):195–198

    Google Scholar 

  • Bing Z, Liu J, Wang X, Wei Z (2018) Full-length RNA sequencing reveals unique transcriptome composition in bermudagrass. Plant Physiol Biochem 132:95–103

    Article  CAS  Google Scholar 

  • Chao Y, Yuan J, Li S, Jia S, Han L, Xu L (2018) Analysis of transcripts and splice isoforms in red clover (Trifolium pratense L.) by single-molecule long-read sequencing. BMC Plant Biol 18(1):300

  • Chao Y, Yuan J, Guo T, Xu L, Mu Z, Han L (2019) Analysis of transcripts and splice isoforms in Medicago sativa L. by single-molecule long-read sequencing. Plant Mol Biol 99(3):219–235

  • Chen X, Xia L, Zhu S, Tang S, Mei S, Chen J, Shan L, Liu M, Gu Y, Dai Q (2018) Transcriptome-referenced association study of clove shape traits in garlic. DNA Res 25(6):587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Liu Y, Yin S, Qiu J, Jin Q, King GJ, Wang J, Ge X, Li Z (2020) Alternatively spliced BnaPAP2.A7 isoforms play opposing roles in anthocyanin biosynthesis of Brassica napus L. Front Plant Sci 11:983

  • Dewey CN, Bo L (2011) RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinform 12(1):323–323

    Article  CAS  Google Scholar 

  • Fleming MB, Patterson EL, Reeves PA, Richards CM, Walters C (2018) Exploring the fate of mRNA in aging seeds: protection, destruction, or slow decay? J Exp Bot 69(18):4309–4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fossen T, Andersen ØM (1998) Cyanidin 3-O-(6″-Succinyl-β-glucopyranoside) and other anthocyanins from phragmites australis. J Agric Food Chem 49(4):1065–1068

    CAS  Google Scholar 

  • Fossen T, Slimestad R, Andersen OM (2001) Anthocyanins from maize (Zea mays) and reed canarygrass (Phalaris arundinacea). J Agric Food Chem 49(5):2318–2321

    Article  CAS  PubMed  Google Scholar 

  • Frank M, Harald K, Pawel B, Bernd W (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138(2):1083–1096

    Article  CAS  Google Scholar 

  • Godzik LA (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13):1658–1659

    Article  PubMed  CAS  Google Scholar 

  • Goergen E, Daehler CC (2002) Factors affecting seedling recruitment in an invasive grass (Pennisetum setaceum) and a nativegrass (Heteropogon contortus) in the Hawaiian Islands. Plant Ecol 161(2):147–156

    Article  Google Scholar 

  • Gould KS, Markham KR, Smith RH, Goris JJ (2000) Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. J Exp Bot 51(347):1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB, Self R (1987) Malonated cyanidin 3-glucosides in Zea mays and other grasses. Phytochemistry 26(8):2417–2418

    Article  CAS  Google Scholar 

  • He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187

    Article  CAS  PubMed  Google Scholar 

  • Hoch WA, Zeldin EL, Mccown BH (2001) Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiol 21(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Gong Y, Jin S, Zhu Q (2011) Molecular analysis of a UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) gene from purple potato (Solanum tuberosum). Mol Biol Rep 38(1):561–567

    Article  CAS  PubMed  Google Scholar 

  • Jaakola L (2013) New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci 18(9):477–483

    Article  CAS  PubMed  Google Scholar 

  • Jia D, Wang Y, Liu Y, Hu J, Guo Y, Gao L, Ma RJSR (2018) SMRT sequencing of full-length transcriptome of flea beetle Agasicles hygrophila (Selman and Vogt). Sci Rep 8(1):2197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia N, Wang J, Wang Y, Ye W, Liu J, Jiang J, Sun J, Yan P, Wang P, Wang F, Fan B (2021a) The light-induced WD40-repeat transcription factor DcTTG1 regulates anthocyanin biosynthesis in Dendrobium candidum. Front Plant Sci 12:633333

  • Jia N, Wang JJ, Liu J, Jiang J, Sun J, Yan P, Sun Y, Wan P, Ye W, Fan B (2021b) DcTT8, a bHLH transcription factor, regulates anthocyanin biosynthesis in Dendrobium candidum. Plant Physiol Biochem 162:603–612

    Article  CAS  PubMed  Google Scholar 

  • Jian W, Cao H, Yuan S, Liu Y, Lu J, Lu W, Li N, Wang J, Zou J, Tang N, Xu C, Cheng Y, Gao Y, Xi W, Bouzayen M, Li Z (2019) SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Hortic Res 6:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang T, Zhang M, Wen C, Xie X, Tian W, Wen S, Lu R, Liu L (2020) Integrated metabolomic and transcriptomic analysis of the anthocyanin regulatory networks in Salvia miltiorrhiza Bge. flowers. BMC Plant Biol 20(1):349

  • Lai B, Du LN, Rui L, Bing H, Su WB, Qin YH, Zhao JT, Wang HC, Hu GB (2016) Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation. Front Plant Sci 7:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Lepiniec L, Xu W, Dubos C (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20(3):176–185

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Dai C, Hu C, Liu Z, Kang C (2017) Global identification of alternative splicing via comparative analysis of SMRT- and Illumina-based RNA-seq in strawberry. Plant J 90(1):164–176

    Article  CAS  PubMed  Google Scholar 

  • Li J, An Y, Wang L (2020a) Transcriptomic analysis of Ficus carica peels with a focus on the key genes for anthocyanin biosynthesis. Int J Mol Sci 21(4):1245

    Article  CAS  PubMed Central  Google Scholar 

  • Li Q, Xiang C, Xu L, Cui J, Fu S, Chen B, Yang S, Wang P, Xie Y, Wei MJBG (2020b) SMRT sequencing of a full-length transcriptome reveals transcript variants involved in C18 unsaturated fatty acid biosynthesis and metabolism pathways at chilling temperature in Pennisetum giganteum. BMC Genomics 21(1):52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhang B, Wu J, Li Z, Han F, Fang Z, Yang L, Zhuang M, Lv H, Liu Y, Li Z, Yu H, Li X, Zhang Y (2020) Pigment variation and transcriptional response of the pigment synthesis pathway in the S2309 triple-color ornamental kale (Brassica oleracea L. var. acephala) line. Genomics 112(3):2658–2665

  • Ma Gonzalez-Rodriguez A, Baruch Z, Palomo D, Cruz-Trujillo G, Soledad Jimenez M, Morales D (2010) Ecophysiology of the invader Pennisetum setaceum and three native grasses in the Canary Islands. Acta Oecol (Montrouge) 36(2):248–254

    Article  Google Scholar 

  • Minoru K, Susumu G, Shuichi K, Yasushi O, Masahiro H (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32(Database issue):D277

  • Nakatsuka T, Haruta KS, Pitaksutheepong C, Abe Y, Nishihara M (2008) Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers. Plant Cell Physiol 49(12):1818–1829

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Zhao Y, Tao R, Yin L, Gao L, Strid K, Qian M, Li J, Li Y, Shen J (2020) Ethylene mediates the branching of the jasmonate-induced flavonoid biosynthesis pathway by suppressing anthocyanin biosynthesis in red Chinese pear fruits. Plant Biotechnol J 18(5):1223–1240

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, Mccarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Biogeosciences 26:139–140

    CAS  Google Scholar 

  • Sharma S, Dionisio G, Holme IB, Dzhanfezova T, Joernsgaard B, Brinch-Pedersen H (2021) Anthocyanin synthesis in orange carrot cv. Danvers is activated by transgene expression of the transcription factors DcMYB113_NB and DcEGL1_NB from black carrot cv. Nightbird. Plant Mol Biol 106(3):259–270

  • Shi Q, Du J, Zhu D, Li X, Li X (2020) Metabolomic and transcriptomic analyses of anthocyanin biosynthesis mechanisms in the color mutant Ziziphus jujuba cv. Tailihong. Agric Food Chem 68(51):15186–15198

    Article  CAS  Google Scholar 

  • Steyn WJ, Wand S, Holcroft DM, Jacobs GJNP (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155(3):349–361

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54(4):733–749

    Article  CAS  PubMed  Google Scholar 

  • Teng K, Tan P, Xiao G, Han L, Chang Z, Chao Y (2016) Heterologous expression of a novel Zoysia japonica salt-induced glycine-rich RNA-binding protein gene, ZjGRP, caused salt sensitivity in Arabidopsis. Plant Cell Rep 36(1):1–13

    Google Scholar 

  • Teng K, Teng W, Wen H, Yue Y, Guo W, Wu J, Fan X (2019) PacBio single-molecule long-read sequencing shed new light on the complexity of the Carex breviculmis transcriptome. BMC Genom 20(suppl_2):158–164

  • Viljoen CD, Snyman MC, Spies JJ (2013) Identification and expression analysis of chalcone synthase and dihydroflavonol 4-reductase in Clivia miniata. S Afr J Bot 87:18–21

    Article  CAS  Google Scholar 

  • Wang M, Wang P, Liang F, Ye Z, Li J, Shen C, Pei L, Wang F, Hu J, Tu L (2017a) A global survey of alternative splicing in allopolyploid cotton: landscape, complexity and regulation. New Phytol 217(1):163–178

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Xu H, Jiang S, Zhang Z, Lu N, Qiu H, Qu C, Wang Y, Wu S, Chen X (2017b) MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant J 90(2):276–292

  • Wang T, Wang H, Cai D, Gao Y, Gu L (2017c) Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo (Phyllostachys edulis). Plant J 91(4):684–699

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Meng X, Liang L, Jiang W, Huang Y, He J, Hu H, Almqvist J, Xiang G, Wang L (2015) Molecular and biochemical analysis of chalcone synthase from Freesia hybrid in flavonoid biosynthetic pathway. PLoS ONE 10(3):e0119054

    Article  CAS  Google Scholar 

  • Workman RE, Myrka AM, William WG, Elizabeth T, Welch KC, Winston T (2018) Single molecule, full-length transcript sequencing provides insight into the extreme metabolism of ruby-throated hummingbird Archilochus colubris. GigaScience 7(3):1–12

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Zou Q, Yang G, Jiang S, Fang H, Wang Y, Zhang J, Zhang Z, Wang N, Chen X (2020) MdMYB6 regulates anthocyanin formation in apple both through direct inhibition of the biosynthesis pathway and through substrate removal. Hortic Res 7(1):72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Duff MO, Graveley BR, Carmichael GG, Chen LL (2011) Genomewide characterization of non-polyadenylated RNAs. Genome Biol. https://doi.org/10.1186/gb-2011-12-2-r16

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang T, Ma H, Zhang J, Wu T, Song T, Tian J, Yao Y (2019) Systematic identification of long noncoding RNAs expressed during light-induced anthocyanin accumulation in apple fruit. Plant J 100(3):572–590

    Article  CAS  PubMed  Google Scholar 

  • Yankai L, Xiao-Wei Z, Xin L, Peng-Fei Z, Ling S, Gui-Luan W, Xiao-Fei W, Yuan-Yuan L, Chun-Xiang Y, Jian-Ping A (2022) Phytochrome interacting factor MdPIF7 modulates anthocyanin biosynthesis and hypocotyl growth in apple. Plant Physiol. https://doi.org/10.1093/plphys/kiab605

    Article  Google Scholar 

  • Yokozawa T, Chen CP, Dong E, Tanaka T, Nishioka I (1998) Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2-picrylhydrazyl radical. Biochem Pharmacol 56(2):213–222

    Article  CAS  PubMed  Google Scholar 

  • Yonekura-Sakakibara K, Higashi Y, Nakabayashi R (2019) The origin and evolution of plant flavonoid metabolism. Front Plant Sci 10:943

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue Y, Fan X, Hu Y, Han C, Li H, Teng W, Zhang H, Teng K, Wen H, Yang X, Wu J (2020) In vitro induction and characterization of hexaploid Pennisetum × advena, an ornamental grass. Plant Cell Tissue Organ Cult 142(2):221–228

    Article  CAS  Google Scholar 

  • Zhang G, Chen D, Zhang T, Duan A, Zhang J, He C (2018) Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening. DNA Res 25(5):465–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Qian J, Han Y, Jia Y, Kuang H, Chen J (2022) Alternative splicing triggered by the insertion of a CACTA transposon attenuates LsGLK and leads to the development of pale-green leaves in lettuce. Plant J. https://doi.org/10.1111/tpj.15563

    Article  PubMed  Google Scholar 

  • Zhu FY, Chen MX, Ye NH, Shi L, Ma KL, Yang JF, Cao YY, Zhang Y, Yoshida T, Fernie AR (2017) Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings. Plant J 91(3):518–533

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Wang X, Xu Z, Xu J, Li R, Liu N, Ding G, Sui S (2020) Screening of key genes responsible for Pennisetum setaceum “Rubrum” leaf color using transcriptome sequencing. PLoS ONE 15(11):e0242618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang H, Lou Q, Liu H, Han H, Wang Q, Tang Z, Ma Y, Wang H (2019) Differential regulation of anthocyanins in green and purple turnips revealed by combined de novo transcriptome and metabolome analysis. Int J Mol Sci 20(18):4387

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the Biomarker Corporation (Beijing, China) for the facilities and expertise of Illumina platform for libraries construction and sequencing.

Funding

This research was supported by the National Natural Science Foundation of China (31901397) and Scientific Funds of Beijing Academy of Agriculture and Forestry Sciences (KJCX20210431, CZZJ202210, KJCX20220103). Each of the funding bodies granted the funds based on a research proposal. They had no influence over the experimental design, data analysis or interpretation, or writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KT and XF conceived the study and designed the experiments. LL performed the experiment. LL analyzed the data with suggestions by JW, HZ, CH. LL wrote the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Ke Teng or Xifeng Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The materials used in this study were collected by ourselves. And we complied with all relevant institutional, national and international guidelines and specify the appropriate permissions obtained.

Consent to participate

We have acquired a permission to collect all of the plant materials.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11103_2022_1264_MOESM1_ESM.tif

Supplementary file1 (TIF 8697 KB)—Figure S1 NGS sequencing data evaluation and biological repetitions dependency examination. A Comparison diagram of FPKM density distribution of each sample. The abscissa represents the logarithm of the corresponding sample FPKM, and the ordinate of the point represents the probability density. B The logarithmic distribution of sample expression level FPKM. C The correlation of expression dependent heat map of the sample.

Supplementary file2 (PNG 159 KB)—Figure S2 Distribution of transcription factor types.

Supplementary file3 (TIF 1111 KB)—Figure S3 The length distribution of the predicted CDS-encoded protein.

11103_2022_1264_MOESM4_ESM.png

Supplementary file4 (PNG 67 KB)—Figure S4 Statistical graph of lncRNAs predicted by CPC analysis, CNCI analysis, Pfam protein domain analysis, and CPAT analysis.

Supplementary file5 (XLSX 401 KB)—Table S1 Summary of the candidate AS events.

Supplementary file6 (XLSX 57 KB)—Table S2 Prediction results of the target mRNAs for lncRNAs.

11103_2022_1264_MOESM7_ESM.xlsx

Supplementary file7 (XLSX 11 KB)—Table S3 Pigment contents of different flavonoids in green leaves, lilac leaves and purple leaves.

Supplementary file8 (XLSX 10 KB)—Table S4 Sequences of the primers used for qRT-PCR verification.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Teng, K., Fan, X. et al. Combination analysis of single-molecule long-read and Illumina sequencing provides insights into the anthocyanin accumulation mechanism in an ornamental grass, Pennisetum setaceum cv. Rubrum. Plant Mol Biol 109, 159–175 (2022). https://doi.org/10.1007/s11103-022-01264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-022-01264-x

Keywords

Navigation