Skip to main content
Log in

TOPLESS in the regulation of plant immunity

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

This review presents the multiple ways how topless and topless-related proteins regulate defense activation in plants and help in optimizing the defense-growth tradeoff.

Abstract

Eukaryotic gene expression is tightly regulated at various levels by hormones, transcription regulators, post-translational modifications, and transcriptional coregulators. TOPLESS (TPL)/TOPLESS-related (TPR) corepressors regulate gene expression by interacting with other transcription factors. TPRs regulate auxin, gibberellins, jasmonic acid, strigolactone, and brassinosteroid signaling in plants. In general, except for GA, TPLs suppress these signaling pathways to prevent unwanted activation of hormone signaling. The association of TPL/TPRs in these hormonal signaling reflects a wide role of this class of corepressors in plants' normal and stress physiology. The involvement of TPL in immune responses was first demonstrated a decade ago as a repressor of DND1 and DND2 that are negative regulators of plant immune response. Over the last decade, several research groups have established a larger role of TPL/TPRs in plant immunity during both pattern- and effector-triggered immunity. Very recent research unraveled the significant involvement of TPRs in balancing the growth and defense trade-off. TPRs, along with proteasomal degradation complex, miRNA, and phasiRNA, suppress the activation of autoimmunity in plants under normal conditions and promote defense under pathogen attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

 There is no original data associated with the publication. 

Abbreviations

ABA:

Abscisic acid

ABI3:

ABA INSENSITIVE 3

AFB:

AUXIN SIGNALING F‐BOX

ARF:

Auxin response factor

AUX/IAA:

Auxin/ indole-3-acetic acid

BAK1:

BRI1- ASSOCIATED KINASE 1

BES1:

BRI1-EMS-SUPPRESSOR 1

BR:

Brassinosteroid

BRC1:

BRANCHED 1

BRI1 :

BRASSINOSTEROID INSENSITIVE 1

BRD:

B3 repression domain

BZR1:

BRASSINAZOLE-RESISTANT 1

CAMTA:

Calmodulin binding Transcription Activator

COI1:

CORONATINE-INSENSITIVE1

CPR1:

CONSTITUTIVE EXPRESSER OF PR GENES 1

CPR5:

CONSTITUTIVE EXPRESSER OF PR GENES 5

CRA domain:

CT11-RanBPM domain

CTLH:

C-terminal to LisH

DAMP:

Danger-associated molecular pattern

DCL:

DICER-Like

DND1/2:

DEFENSE NO DEATH 1 /2

EAR:

ERF associated amphiphilic repression

EDS1:

Enhanced disease susceptibility1

ERF:

Ethylene response factor

ET:

Ethylene

ETI:

Effector-triggered immunity

ETS:

Effector-triggered susceptibility

GA:

Gibberellic acid

GAF1:

GAI-ASSOCIATED FACTOR1

GFP:

Green fluorescent protein

GID1:

GIBBERELLIN INSENSITIVE DWARF1

HDA19:

Histone deacetylase 19

Hpa:

Hyaloperonospora arabidopsidis

HR:

Hypersensitive response

IAA:

Indole-3 acetic acid

JA:

Jasmonic acid

JAZ:

Jasmonate ZIM-domain

Jsi1:

Jasmonate/ethylene inducer1

LisH domain:

Lissencephaly homologue domain

MAMP:

Microbe-associated molecular pattern

NAA:

Naphthalene 1-acetic acid

NINJA:

Novel interactor of JAZ

NLR:

Nucleotide binding-Leu-rich repeat

NLS:

Nuclear Localization signal

NBS-LRR:

Nucleotide-binding site leucine-rich repeat

PAD4:

Phytoalexin deficient 4

PAMP:

Pathogen-associated molecular pattern

PAP1:

PRODUCTION OF ANTHOCYANIN PIGMENT 1

PQR:

Proline and glutamine rich

PRR:

Pattern recognition receptors

PTI:

Pattern-triggered immunity

RAV1:

Related to ABI3/VP1-1

RD:

Repression domain

RDR6:

RNA dependent RNA polymerase 6

RISC:

RNA-induced silencing complex

ROS:

Reactive oxygen species

SA:

Salicylic acid

SAR:

Systemic acquired resistance

SIZ1:

SAP and MIZ1 DOMAIN CONTAINING LIGASE1

SKP1:

SKP1-CULLIN1-F-box

SL:

Strigolactone

SMXL:

SUPPRESSOR OF MAX2-LIKE

SNC1:

Suppressor of npr1-1, constitutive 1

SUMO:

Small Ubiquitin like modifier

TEM1:

TEMPRANILLO1

TCP1:

TCP DOMAIN PROTEIN 1

TET 9:

TETRASPANIN9

TF:

Transcription factor

TIR1:

TRANSPORT INHIBITOR RESPONSE 1

TPD:

TOPLESS domain

TPL:

TOPLESS-like

TPR:

Topless related

VRN:

VERNALIZATION

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Banday ZZ, Nandi AK (2015) Interconnection between flowering time control and activation of systemic acquired resistance. Front Plant Sci 6:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baurle I, Dean C (2008) Differential interactions of the autonomous pathway RRM proteins and chromatin regulators in the silencing of Arabidopsis targets. PLoS ONE 3:e2733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boccara M, Sarazin A, Thiébeauld O, Jay F, Voinnet O, Navarro L, Colot V (2014) The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathog 10:e1003883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Cai Q, Liang C, Wang S, Hou Y, Gao L, Liu L, He W, Ma W, Mo B, Chen X (2018) The disease resistance protein SNC1 represses the biogenesis of microRNAs and phased siRNAs. Nat Commun 9:5080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Causier B, Ashworth M, Guo W, Davies B (2011) The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol 158:423–438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Causier B, Lloyd J, Stevens L, Davies B (2012) TOPLESS co-repressor interactions and their evolutionary conservation in plants. Plant Signal Behav 7:325–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang M, Zhao J, Chen H, Li G, Chen J, Li M, Palmer IA, Song J, Alfano JR, Liu F, Fu ZQ (2019) PBS3 protects EDS1 from proteasome-mediated degradation in plant immunity. Mol Plant 12:678–688

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J, Kunkel BN (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci USA 104:20131–20136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng YT, Li Y, Huang S, Huang Y, Dong X, Zhang Y, Li X (2011) Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation. Proc Natl Acad Sci USA 108:14694–14699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins J, O’Grady K, Chen S, Gurley W (2019) The C-terminal WD40 repeats on the TOPLESS co-repressor function as a protein–protein interaction surface. Plant Mol Biol 100:47–58

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Wu S, Sun W, Coaker G, Kunkel B, He P, Shan L (2013) The Pseudomonas syringae type III effector AvrRpt2 PROMOTES pathogen virulence via stimulating Arabidopsis Auxin/Indole acetic acid protein turnover. Plant Physiol 162:1018–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darino M, Chia KS, Marques J, Aleksza D, Soto-Jiménez LM, Saado I, Uhse S, Borg M, Betz R, Bindics J, Zienkiewicz K, Feussner I, Petit-Houdenot Y, Djamei A (2021) Ustilago maydis effector Jsi1 interacts with Topless corepressor, hijacking plant jasmonate/ethylene signaling. New Phytol 229:3393–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Flores-Sandoval E, Eklund DM, Bowman JL (2015) A simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort marchantia polymorpha. PLoS Genet 11:e1005207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukazawa J, Teramura H, Murakoshi S, Nasuno K, Nishida N, Ito T, Yoshida M, Kamiya Y, Yamaguchi S, Takahashi Y (2014) DELLAs function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in Arabidopsis. Plant Cell 26:2920–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garner CM, Spears BJ, Su J, Cseke LJ, Smith SN, Rogan CJ, Gassmann W (2021) Opposing functions of the plant TOPLESS gene family during SNC1-mediated autoimmunity. PLoS Genet 17:e1009026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gou M, Shi Z, Zhu Y, Bao Z, Wang G, Hua J (2012) The F-box protein CPR1/CPR30 negatively regulates R protein SNC1 accumulation. Plant J 69:411–420

    Article  CAS  PubMed  Google Scholar 

  • Gou M, Huang Q, Qian W, Zhang Z, Jia Z, Hua J (2017) Sumoylation E3 ligase SIZ1 modulates plant immunity partly through the immune receptor gene SNC1 in Arabidopsis. Mol Plant Microbe Interact 30:334–342

    Article  CAS  PubMed  Google Scholar 

  • Griebel T, Lapin D, Kracher B, Concia L, Benhamed M, Parker J (2020) Genome-wide chromatin binding of transcriptional corepressor Topless-related 1 in Arabidopsis. bioRxiv 129:2297

    Google Scholar 

  • Gu Y, Zebell SG, Liang Z, Wang S, Kang B-H, Dong X (2016) Nuclear pore permeabilization is a convergent signaling event in effector-triggered immunity. Cell 166:1526-1538.e1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammoudi V, Fokkens L, Beerens B, Vlachakis G, Chatterjee S, Arroyo-Mateos M, Wackers PFK, Jonker MJ, van den Burg HA (2018) The Arabidopsis SUMO E3 ligase SIZ1 mediates the temperature dependent trade-off between plant immunity and growth. PLoS Genet 14:e1007157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hao Y, Wang X, Li X, Bassa C, Mila I, Audran C, Maza E, Li Z, Bouzayen M, van der Rest B, Zouine M (2014) Genome-wide identification, phylogenetic analysis, expression profiling, and protein–protein interaction properties of TOPLESS gene family members in tomato. J Exp Bot 65:1013–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey S, Kumari P, Lapin D, Griebel T, Hickman R, Guo W, Zhang R, Parker JE, Beynon J, Denby K, Steinbrenner J (2020) Downy Mildew effector HaRxL21 interacts with the transcriptional repressor TOPLESS to promote pathogen susceptibility. PLoS Pathog 16:e1008835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, Givan SA, Kasschau KD, Carrington JC (2007) Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19:926–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M, Ohme-Takagi M (2009) A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol 50:970–975

    Article  CAS  PubMed  Google Scholar 

  • Ito J, Fukaki H, Onoda M, Li L, Li C, Tasaka M, Furutani M (2016) Auxin-dependent compositional change in mediator in ARF7- and ARF19-mediated transcription. Proc Natl Acad Sci USA 113:6562–6567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu HE, Wang Y, Li J (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504:401–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Ke J, Ma H, Gu X, Thelen A, Brunzelle JS, Li J, Xu HE, Melcher K (2015a) Structural basis for recognition of diverse transcriptional repressors by the TOPLESS family of corepressors. Sci Adv 1:e1500107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim MH, Cooper DR, Oleksy A, Devedjiev Y, Derewenda U, Reiner O, Otlewski J, Derewenda ZS (2004) The structure of the N-terminal domain of the product of the Lissencephaly gene Lis1 and its functional implications. Structure 12:987–998

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Shim D, Moon S, Lee J, Bae W, Choi H, Kim K, Ryu H (2019) Transcriptional network regulation of the brassinosteroid signaling pathway by the BES1–TPL–HDA19 co-repressor complex. Planta 250:1371–1377

    Article  CAS  PubMed  Google Scholar 

  • Krogan NT, Hogan K, Long JA (2012) APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Development 139:4180–4190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JE, Golz JF (2012) Diverse roles of Groucho/Tup1 co-repressors in plant growth and development. Plant Signal Behav 7:86–92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee J, Nam J, Park HC, Na G, Miura K, Jin JB, Yoo CY, Baek D, Kim DH, Jeong JC, Kim D, Lee SY, Salt DE, Mengiste T, Gong Q, Ma S, Bohnert HJ, Kwak SS, Bressan RA, Hasegawa PM, Yun DJ (2007) Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J 49:79–90

    Article  CAS  PubMed  Google Scholar 

  • Leydon AR, Wang W, Gala HP, Gilmour S, Juarez-Solis S, Zahler ML, Zemke JE, Zheng N, Nemhauser JL (2021) Repression by the Arabidopsis TOPLESS corepressor requires association with the core mediator complex. Elife 10:e66739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q-F, Lu J, Yu J-W, Zhang C-Q, He J-X, Liu Q-Q (2018) The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. Biochim Biophys Acta 1861:561–571

    Article  CAS  Google Scholar 

  • Li C, Shi L, Wang Y, Li W, Chen B, Zhu L, Fu Y (2020) Arabidopsis ECAP is a new adaptor protein that connects JAZ repressors with the TPR2 co-repressor to suppress Jasmonate-responsive anthocyanin accumulation. Mol Plant 13:246–265

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Karmarkar V (2008) Groucho/Tup1 family co-repressors in plant development. Trends Plant Sci 13:137–144

    Article  CAS  PubMed  Google Scholar 

  • Long JA, Ohno C, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520–1523

    Article  CAS  PubMed  Google Scholar 

  • Luna E, Bruce TJ, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Duan J, Ke J, He Y, Gu X, Xu TH, Yu H, Wang Y, Brunzelle JS, Jiang Y, Rothbart SB, Xu HE, Li J, Melcher K (2017) A D53 repression motif induces oligomerization of TOPLESS corepressors and promotes assembly of a corepressor-nucleosome complex. Sci Adv 3:e1601217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mang H-G, Qian W, Zhu Y, Qian J, Kang H-G, Klessig DF, Hua J (2012) Abscisic acid deficiency antagonizes high-temperature inhibition of disease resistance through enhancing nuclear accumulation of resistance proteins SNC1 and RPS4 in Arabidopsis. Plant Cell 24:1271–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Arevalillo R, Nanao MH, Larrieu A, Vinos-Poyo T, Mast D, Galvan-Ampudia C, Brunoud G, Vernoux T, Dumas R, Parcy F (2017a) Structure of the Arabidopsis TOPLESS corepressor provides insight into the evolution of transcriptional repression. Proc Natl Acad Sci 114:8107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Arevalillo R, Nanao MH, Larrieu A, Vinos-Poyo T, Mast D, Galvan-Ampudia C, Brunoud G, Vernoux T, Dumas R, Parcy F (2017b) Structure of the Arabidopsis TOPLESS corepressor provides insight into the evolution of transcriptional repression. Proc Natl Acad Sci USA 114:8107–8112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Arevalillo R, Thévenon E, Jégu F, Vinos-Poyo T, Vernoux T, Parcy F, Dumas R (2019) Evolution of the Auxin Response Factors from charophyte ancestors. PLoS Genet 15:e1008400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MJ, Barrett-Wilt GA, Hua Z, Vierstra RD (2010) Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proc Natl Acad Sci USA 107:16512–16517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102:7760–7765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating Brassinosteroid signaling. Cell 110:203–212

    Article  CAS  PubMed  Google Scholar 

  • Navarrete F, Gallei M, Kornienko AE, Saado I, Khan M, Chia K-S, Darino MA, Bindics J, Djamei A (2021) TOPLESS promotes plant immunity by repressing auxin signaling and is targeted by the fungal effector Naked1. Plant Commun 583:100269

    Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Niu D, Lin X-L, Kong X, Qu G-P, Cai B, Lee J, Jin JB (2019) SIZ1-mediated SUMOylation of TPR1 suppresses plant immunity in Arabidopsis. Mol Plant 12:215–228

    Article  CAS  PubMed  Google Scholar 

  • Novatchkova M, Budhiraja R, Coupland G, Eisenhaber F, Bachmair A (2004) SUMO conjugation in plants. Planta 220:1–8

    Article  CAS  PubMed  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC, Chico JM, Bossche RV, Sewell J, Gil E, García-Casado G, Witters E, Inzé D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19:421–428

    Article  CAS  PubMed  Google Scholar 

  • Ryu H, Kim K, Cho H, Park J, Choe S, Hwang I (2007) Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis Brassinosteroid signaling. Plant Cell 19:2749–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu H, Cho H, Bae W, Hwang I (2014) Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nat Commun 5:4138

    Article  CAS  PubMed  Google Scholar 

  • Shivaprasad PV, Chen H-M, Patel K, Bond DM, Santos BACM, Baulcombe DC (2012) A MicroRNA superfamily regulates nucleotide binding site–Leucine-rich repeats and other mRNAs. Plant Cell 24:859–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh V, Roy S, Giri MK, Chaturvedi R, Chowdhury Z, Shah J, Nandi AK (2013) Arabidopsis thaliana FLOWERING LOCUS D is required for systemic acquired resistance. Mol Plant Microbe Interact 26:1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Sticher L, Mauch-Mani B, Metraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  CAS  PubMed  Google Scholar 

  • Sun T-P (2010) Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol 154:567–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T-Y, Hsing Y-IC, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Article  CAS  PubMed  Google Scholar 

  • van den Burg HA, Takken FL (2010) SUMO-, MAPK-, and resistance protein-signaling converge at transcription complexes that regulate plant innate immunity. Plant Signal Behav 5:1597–1601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Burg HA, Kini RK, Schuurink RC, Takken FLW (2010) Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell 22:1998–2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Verk MC, Bol JF, Linthorst HJM (2011) WRKY transcription factors involved in activation of SA biosynthesis genes. BMC Plant Biol 11:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Kim J, Somers DE (2013) Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription. Proc Natl Acad Sci USA 110:761–766

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang B, Yu H, Guo H, Lin T, Kou L, Wang A, Shao N, Ma H, Xiong G, Li X, Yang J, Chu J, Li J (2020) Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature 583:277–281

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu F, Jia M, Li X, Tang Y, Jiang K, Bao J, Gu Y (2021) Exportin-4 coordinates nuclear shuttling of TOPLESS family transcription corepressors to regulate plant immunity. Plant Cell 33:697–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Yates G, Srivastava AK, Sadanandom A (2016) SUMO proteases: uncovering the roles of deSUMOylation in plants. J Exp Bot 67:2541–2548

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Wang Z-Y, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to Brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181–191

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005) A new class of transcription factors mediates Brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249–259

    Article  CAS  PubMed  Google Scholar 

  • Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, González AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai Q, Zhang X, Wu F, Feng H, Deng L, Xu L, Zhang M, Wang Q, Li C (2015) Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell 27:2814–2828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Goritschnig S, Dong X, Li X (2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15:2636–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Dorey S, Swiderski M, Jones JD (2004) Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant J 40:213–224

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xia R, Kuang H, Meyers BC (2016) The diversification of plant NBS-lrr defense genes directs the evolution of MicroRNAs that target them. Mol Biol Evol 33:2692–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Mosher S, Tian M, Sassi G, Parker J, Klessig DF (2008) The Arabidopsis gain-of-function mutant ssi4 requires RAR1 and SGT1b differentially for defense activation and morphological alterations. Mol Plant Microbe Interact 21:40–49

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Xu F, Zhang Y, Cheng YT, Wiermer M, Li X, Zhang Y (2010) Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proc Natl Acad Sci 107:13960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

RS is a recipient of the CSIR fellowship. Lab of AKN is supported with CSIR (No. 38(1515)/21-EMR-II) and SERB (File No. CRG/2020/000587) Grant.

Funding

RS is a recipient of the CSIR fellowship. Lab of AKN is supported with CSIR (No. 38(1515)/21-EMR-II) and SERB (File No. CRG/2020/000587) Grant.

Author information

Authors and Affiliations

Authors

Contributions

RS wrote the draft and made diagrams. AKN modified the draft, which was approved by both the authors.

Corresponding author

Correspondence to Ashis Kumar Nandi.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, R., Nandi, A.K. TOPLESS in the regulation of plant immunity. Plant Mol Biol 109, 1–12 (2022). https://doi.org/10.1007/s11103-022-01258-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-022-01258-9

Keywords

Navigation