Skip to main content
Log in

PtWOX11 acts as master regulator conducting the expression of key transcription factors to induce de novo shoot organogenesis in poplar

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

WUSCHEL-RELATED HOMEOBOX 11 establishes the acquisition of pluripotency during callus formation and accomplishes de novo shoot formation by regulating key transcription factors in poplar.

Abstract

De novo shoot regeneration is a prerequisite for propagation and genetic engineering of elite cultivars in forestry. However, the regulatory mechanism of de novo organogenesis is poorly understood in tree species. We previously showed that WUSCHEL (WUS)-RELATED HOMEOBOX 11 (PtWOX11) of the hybrid poplar clone 84K (Populus alba × P. glandulosa) promotes de novo root formation. In this study, we found that PtWOX11 also regulates de novo shoot regeneration in poplar. The overexpression of PtWOX11 enhanced de novo shoot formation, whereas overexpression of PtWOX11 fused with the transcriptional repressor domain (PtWOX11-SRDX) or reduced expression of PtWOX11 inhibited this process, indicating that PtWOX11 promotes de novo shoot organogenesis. Although PtWOX11 promotes callus formation, overexpression of PtWOX11 and PtWOX11-SRDX also produced increased and decreased numbers of de novo shoots per unit weight, respectively, implying that PtWOX11 promotes de novo shoot organogenesis partially by regulating the intrinsic mechanism of shoot development. RNA-seq and qPCR analysis further revealed that PtWOX11 activates the expression of PLETHORA1 (PtPLT1) and PtPLT2, whose Arabidopsis paralogs establish the acquisition of pluripotency, during incubation on callus-inducing medium. Moreover, PtWOX11 activates the expression of shoot-promoting factors and meristem regulators such as CUP-SHAPED COTYLEDON2 (PtCUC2), PtCUC3, WUS and SHOOT MERISTEMLESS to fulfill shoot regeneration during incubation on shoot-inducing medium. These results suggest that PtWOX11 acts as a central regulator of the expression of key genes to cause de novo shoot formation. Our studies further provide a possible means to genetically engineer economically important tree species for their micropropagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aida M, Ishida T, Tasaka M (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among CUP-SHAPED COTYLEDON the and SHOOT MERISTEMLESS genes. Development 126:1563–1570

    CAS  PubMed  Google Scholar 

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    Article  CAS  Google Scholar 

  • Alexa A, Rahnenführer J, Lengauer T (2006) Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22:1600–1607

    Article  CAS  Google Scholar 

  • Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc’h A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57:626–644

    Article  CAS  Google Scholar 

  • Bao Y, Dharmawardhana P, Mockler TC, Strauss SH (2009) Genome scale transcriptome analysis of shoot organogenesis in Populus. BMC Plant Biol 9:132

    Article  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL et al (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  CAS  Google Scholar 

  • Busov VB, Brunner AM, Meilan R, Filichkin S, Ganio L, Gandhi S, Strauss SH (2005) Genetic transformation: a powerful tool for dissection of adaptive traits in trees. New Phytol 167:9–18

    Article  CAS  Google Scholar 

  • Chatfield SP, Capron R, Severino A, Penttila PA, Alfred S, Nahal H, Provart NJ (2013) Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems. Plant J 73:798–813

    Article  CAS  Google Scholar 

  • Che P, Lall S, Nettleton D, Howell SH (2006) Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 141:620–637

    Article  CAS  Google Scholar 

  • Che P, Lall S, Howell SH (2007) Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226:1183–1194

    Article  CAS  Google Scholar 

  • Chen SK, Kurdyukov S, Kereszt A, Wang XD, Gresshoff PM, Rose RJ (2009) The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula. Planta 230:827–840

    Article  CAS  Google Scholar 

  • Coleman GD, Ernst SG (1989) In vitro shoot regeneration of Populus deltoides: effect of cytokinin and genotype. Plant Cell Rep 8:459–462

    Article  CAS  Google Scholar 

  • Daimon Y, Takabe K, Tasaka M (2003) The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant Cell Physiol 44:113–121

    Article  CAS  Google Scholar 

  • Deng Y, Zou W, Li G, Zhao J (2014) TRANSLOCASE OF THE INNER MEMBRANE9 and 10 are essential for maintaining mitochondrial function during early embryo cell and endosperm free nucleus divisions in Arabidopsis. Plant Physiol 166:853–868

    Article  Google Scholar 

  • Duclercq J, Sangwan-Norreel B, Catterou M, Sangwan RS (2011) De novo shoot organogenesis: from art to science. Trends Plant Sci 16:597–606

    Article  CAS  Google Scholar 

  • Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10:967–979

    Article  CAS  Google Scholar 

  • Fan M, Xu C, Xu K, Hu Y (2012) LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 22:1169–1180

    Article  CAS  Google Scholar 

  • Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–3548

    Article  CAS  Google Scholar 

  • Groover AT, Mansfield SD, DiFazio SP, Dupper G, Fontana JR, Millar R, Wang Y (2006) The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium. Plant Mol Biol 61:917–932

    Article  CAS  Google Scholar 

  • Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing WA (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13

    Article  Google Scholar 

  • Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34:733–739

    Article  CAS  Google Scholar 

  • Hofhuis H, Laskowski M, Du Y, Prasad K, Grigg S, Pinon V, Scheres B (2013) Phyllotaxis and rhizotaxis in Arabidopsis are modified by three PLETHORA transcription factors. Curr Biol 23:956–962

    Article  CAS  Google Scholar 

  • Hu X, Xu L (2016) Transcription factors WOX11/12 directly activateWOX5/7 to promote root primordia initiation and organogenesis. Plant Physiol 172:2363–2373

    Article  CAS  Google Scholar 

  • Hu B, Zhang G, Liu W, Shi J, Wang H, Qi M, Li J, Qin P, Ruan Y, Huang H et al (2017) Divergent regeneration-competent cells adopt a common mechanism for callus initiation in angiosperms. Regeneration 4:132–139

    Article  CAS  Google Scholar 

  • Huang X, Chen J, Bao Y, Liu L, Jiang H, An X, Dai L, Wang B, Peng D (2014) Transcript profiling reveals auxin and cytokinin signaling pathways and transcription regulation during in vitro organogenesis of Ramie (Boehmeria nivea L. Gaud). PLoS ONE 9:e113768

    Article  Google Scholar 

  • Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K (2016) Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442–1451

    Article  CAS  Google Scholar 

  • Imin N, Nizamidin M, Wu T, Rolfe BG (2007) Factors involved in root formation in Medicago truncatula. J Exp Bot 58:439–451

    Article  CAS  Google Scholar 

  • Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K et al (2011) The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol 21:508–514

    Article  CAS  Google Scholar 

  • Iwase A, Mitsuda N, Ikeuchi M, Ohnuma M, Koizuka C, Kawamoto K, Imamura J, Ezura H, Sugimoto K (2013) Arabidopsis WIND1 induces callus formation in rapeseed, tomato, and tobacco. Plant Signal Behav 8:e27432

    Article  Google Scholar 

  • Iwase A, Mita K, Nonaka S, Ikeuchi M, Koizuka C, Ohnuma M, Ezura H, Imamura J, Sugimoto K (2015) WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed. J Plant Res 128:389–397

    Article  CAS  Google Scholar 

  • Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, Komaki S, Morohashi K, Kurata T, Nakata M, Ohme-Takagi M et al (2017) WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. Plant Cell 29:54–69

    Article  CAS  Google Scholar 

  • Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458

    Article  CAS  Google Scholar 

  • Jolliffe FR (1986) Survey design and analysis. Ellis Horwood, New York Halsted Press, Chichester

    Google Scholar 

  • Kareem A, Durgaprasad K, Sugimoto K, Du Y, Pulianmackal AJ, Trivedi ZB, Abhayadev PV, Pinon V, Meyerowitz EM, Scheres B et al (2015) PLETHORA genes control regeneration by a two-step mechanism. Curr Biol 25:1017–1030

    Article  CAS  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  Google Scholar 

  • Larsson E, Sundstrom JF, Sitbon F, von Arnold S (2012) Expression of PaNAC01, a Picea abies CUP-SHAPED COTYLEDON orthologue, is regulated by polar auxin transport and associated with differentiation of the shoot apical meristem and formation of separated cotyledons. Ann Bot 110:923–934

    Article  CAS  Google Scholar 

  • Li W, Liu H, Cheng ZJ, Su YH, Han HN, Zhang Y, Zhang XS (2011) DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genet 7:e1002243

    Article  CAS  Google Scholar 

  • Liu B, Wang L, Zhang J, Li J, Zheng H, Chen J, Lu M (2014a) WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation. BMC Genomics 15:296

    Article  Google Scholar 

  • Liu J, Sheng L, Xu Y, Li J, Yang Z, Huang H, Xu L (2014b) WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 26:1081–1093

    Article  CAS  Google Scholar 

  • Liu J, Hu X, Qin P, Prasad K, Hu Y, Xu L (2018) The WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in Arabidopsis tissue culture. Plant Cell Physiol 59:739–748

    Article  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  CAS  Google Scholar 

  • Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37:e123

    Article  Google Scholar 

  • Pulianmackal AJ, Kareem AV, Durgaprasad K, Trivedi ZB, Prasad K (2014) Competence and regulatory interactions during regeneration in plants. Front Plant Sci 5:142

    Article  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  Google Scholar 

  • Ruan YL (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:33–67

    Article  CAS  Google Scholar 

  • Santuari L, Sanchez-Perez GF, Luijten M, Rutjens B, Terpstra I, Berke L, Gorte M, Prasad K, Bao D, Timmermans-Hereijgers JL et al (2016) The PLETHORA gene regulatory network guides growth and cell differentiation in Arabidopsis roots. Plant Cell 28:2937–2951

    Article  Google Scholar 

  • Sassi M, Ali O, Boudon F, Cloarec G, Abad U, Cellier C, Chen X, Gilles B, Milani P, Friml J et al (2014) An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis. Curr Biol 24:2335–2342

    Article  CAS  Google Scholar 

  • Scofield S, Dewitte W, Nieuwland J, Murray JA (2013) The Arabidopsis homeobox gene SHOOT MERISTEMLESS has cellular and meristem-organisational roles with differential requirements for cytokinin and CYCD3 activity. Plant J 75:53–66

    Article  CAS  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–130

    CAS  PubMed  Google Scholar 

  • Smolarkiewicz M, Dhonukshe P (2013) Formative cell divisions: principal determinants of plant morphogenesis. Plant Cell Physiol 54:333–342

    Article  CAS  Google Scholar 

  • Srinivasan C, Liu Z, Heidmann I, Supena ED, Fukuoka H, Joosen R, Lambalk J, Angenent G, Scorza R, Custers JB et al (2007) Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225:341–351

    Article  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  CAS  Google Scholar 

  • Su N, He K, Jiao Y, Chen C, Zhou J, Li L, Bai S, Li X, Deng XW (2007) Distinct reorganization of the genome transcription associates with organogenesis of somatic embryo, shoots, and roots in rice. Plant Mol Biol 63:337–349

    Article  CAS  Google Scholar 

  • Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460

    Article  CAS  Google Scholar 

  • Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18:463–471

    Article  CAS  Google Scholar 

  • Sugiyama M (2015) Historical review of research on plant cell dedifferentiation. J Plant Res 128:349–359

    Article  CAS  Google Scholar 

  • Tanaka W, Ohmori Y, Ushijima T, Matsusaka H, Matsushita T, Kumamaru T, Kawano S, Hirano HY (2015) Axillary meristem formation in rice requires the WUSCHEL Ortholog TILLERS ABSENT1. Plant Cell 27:1173–1184

    Article  CAS  Google Scholar 

  • Vahala J, Felten J, Love J, Gorzsas A, Gerber L, Lamminmaki A, Kangasjarvi J, Sundberg B (2013) A genome-wide screen for ethylene-induced ethylene response factors (ERFs) in hybrid aspen stem identifies ERF genes that modify stem growth and wood properties. New Phytol 200:511–522

    Article  CAS  Google Scholar 

  • Van Der Graaff E, Laux T, Rensing SA (2009) The WUS homeobox-containing (WOX) protein family. Genome Biol 10:248

    Article  Google Scholar 

  • Wang J, Tian C, Zhang C, Shi B, Cao X, Zhang TQ, Zhao Z, Wang JW, Jiao Y (2017) Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation. Plant Cell 29:1373–1387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Huang H (2014) Genetic and epigenetic controls of plant regeneration. Curr Top Dev Biol 108:1–33

    Article  Google Scholar 

  • Xu M, Xie W, Huang M (2015) Two WUSCHEL-related HOMEOBOX genes, PeWOX11a and PeWOX11b, are involved in adventitious root formation of poplar. Physiol Plant 155:446–456

    Article  CAS  Google Scholar 

  • Yevtushenko DP, Misra S (2010) Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. x P. maximowiczii A. Henry. Plant Cell Rep 29:211–221

    Article  CAS  Google Scholar 

  • Yordanov YS, Regan S, Busov V (2010) Members of the LATERAL ORGAN BOUNDARIES DOMAIN transcription factor family are involved in the regulation of secondary growth in Populus. Plant Cell 22:3662–3677

    Article  CAS  Google Scholar 

  • Zhang TQ, Lian H, Zhou CM, Xu L, Jiao Y, Wang JW (2017) A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell 29:1073–1087

    Article  CAS  Google Scholar 

  • Zhao Y, Hu Y, Dai M, Huang L, Zhou DX (2009) The WUSCHEL-Related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell 21:736–748

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Lin Xu (Chinese Academy of Sciences, Shanghai) and Momoko Ikeuchi (RIKEN Center for Sustainable Resource Science) for critical comments on this study. This work was supported by the National Natural Science Foundation of China (Grants 31500548 to BL and 31650110478 to YO), Developmental Program for Distinguished Young Scholars of Fujian Province (2017 to BL), Natural Science Foundation of Fujian province, China (Grant 2017J01605 to YO) and by the National Key R&D Program of China (Grants 2016YFD0600106 to LG). The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

BL performed all the constructions, transformations and experiments and wrote the draft of the manuscript. JZ, MK and LG performed the analysis of the transcriptome data. ZY helped harvest the samples and conducted qPCR. XY and SL assisted with tissue culture, DNA binding and transactivation assay. BL, KP, AM, MS,GAT and YO analyzed the data. ML conceived the project, and YO supervised all experiments and analyses and critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mengzhu Lu or Yoshito Oka.

Additional information

Accession Numbers

The RNA-seq data are available through the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo); the accession number is GSE101922. The sequence data obtained in this study can be found in the P. trichocarpa genome database (version 3.0); the accession numbers are provided in Table S5.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3935 KB)

Supplementary material 2 (RAR 4717 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Zhang, J., Yang, Z. et al. PtWOX11 acts as master regulator conducting the expression of key transcription factors to induce de novo shoot organogenesis in poplar. Plant Mol Biol 98, 389–406 (2018). https://doi.org/10.1007/s11103-018-0786-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-018-0786-x

Keywords

Navigation