Skip to main content
Log in

Inducible expression of Bs2 R gene from Capsicum chacoense in sweet orange (Citrus sinensis L. Osbeck) confers enhanced resistance to citrus canker disease

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Transgenic expression of the pepper Bs2 gene confers resistance to Xanthomonas campestris pv. vesicatoria (Xcv) pathogenic strains which contain the avrBs2 avirulence gene in susceptible pepper and tomato varieties. The avrBs2 gene is highly conserved among members of the Xanthomonas genus, and the avrBs2 of Xcv shares 96% homology with the avrBs2 of Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker disease. A previous study showed that the transient expression of pepper Bs2 in lemon leaves reduced canker formation and induced plant defence mechanisms. In this work, the effect of the stable expression of Bs2 gene on citrus canker resistance was evaluated in transgenic plants of Citrus sinensis cv. Pineapple. Interestingly, Agrobacterium-mediated transformation of epicotyls was unsuccessful when a constitutive promoter (2× CaMV 35S) was used in the plasmid construction, but seven transgenic lines were obtained with a genetic construction harbouring Bs2 under the control of a pathogen-inducible promoter, from glutathione S-transferase gene from potato. A reduction of disease symptoms of up to 70% was observed in transgenic lines expressing Bs2 with respect to non-transformed control plants. This reduction was directly dependent on the Xcc avrBs2 gene since no effect was observed when a mutant strain of Xcc with a disruption in avrBs2 gene was used for inoculations. Additionally, a canker symptom reduction was correlated with levels of the Bs2 expression in transgenic plants, as assessed by real-time qPCR, and accompanied by the production of reactive oxygen species. These results indicate that the pepper Bs2 resistance gene is also functional in a family other than the Solanaceae, and could be considered for canker control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aldwinckle H, Malnoy M (2009) Plant regeneration and transformation in the Rosacea. Transgenic Plant J 3 (Special Issue 1), Global Science Books, 1–39.

    Google Scholar 

  • Ballester A, Cervera M, Peña L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site specific recombination. Plant Cell Rep 26:39–45

    Article  CAS  PubMed  Google Scholar 

  • Barbosa-Mendes JM, Mourão Filho FDAA, Filho AB, Harakava R, Beer SV, Mendes BMJ (2009) Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylovora and evaluation of the transgenic lines for resistance to citrus canker. Sci Hort 122:109–115

    Article  CAS  Google Scholar 

  • Bauer DW, Garr ER, Beer SV, Norelli JL, Aldwinckle HS (1999) New Approaches to the development of Transgenic Plants Resistant to the Fire Blight. Acta Hort (ISHS) 489:301–306

    Article  Google Scholar 

  • Bové JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol 88:7–37

    Google Scholar 

  • Brunings AM, Gabriel DW (2003) Xanthomonas citri: breaking the surface. Mol Plant Pathol 4:141–157

    Article  CAS  PubMed  Google Scholar 

  • Campo S, Manrique S, García-Martínez J, San Segundo B (2008) Production of cecropin A in transgenic rice plants has an impact on host gene expression. Plant Biotech. J. 6, 585–606.

    Article  CAS  Google Scholar 

  • Dangl JL, Dietrichn RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8:1793–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Federación Argentina del Citrus (2015) http://www.federcitrus.org/noticias/upload/informes/La_Actividad_Citricola_2015.pdf

  • Dempsey DMA, Silva H, Klessig DF (1998) Engineering disease and pest resistance in plants. Trends in Microbiol 6:54–61

    Article  CAS  Google Scholar 

  • Deng XX, Duan YX (2006) Modification of perennial fruit trees. In: Fladung M, Ewald D (eds) Tree transgenesis: recent developments. Springer, Berlin, pp 48–66

    Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW (2013) InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.

  • Distefano G, La Malfa S, Vitale A, Lorito M, Deng ZN, Gentile A (2008) Defence related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection. Transgenic Res 17:873–879

    Article  CAS  PubMed  Google Scholar 

  • Donmez D, Simsek O, Izgu T, Kacar YA, Mendi YY (2013) Genetic transformation in citrus. Sci World J 2013,1–8, DOI:10.1155/2013/491207

    Google Scholar 

  • Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset JJ, Arnau J, Pina JA, Navarro L, Peña L (2001) Increased tolerance to Phytophthora citrophthora in transgenic sweet oranges over-expressing pathogenesis related protein PR-5. Mol Breed 7:175–185

    Article  CAS  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev of Phytopathol 9:275–296

    Article  Google Scholar 

  • Ghorbel R, Juarez J, Navarro L, Peña L (1999) Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theor Appl Genet 99:350–358

    Article  Google Scholar 

  • Gottwald TR, Graham JH, Schubert TS (2002). Citrus canker: the pathogen and its impact. Plant Health Prog. doi:10.1094/PHP-2002-0812-01-RV

    Google Scholar 

  • Goulden MG, Baulcombe DC (1993) Functionally homologous host components recognize potato virus X in Gomphrena globosa and potato. Plant Cell 5:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham JH, Gottwald TR, Cubero J, Achor DS (2004) Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Mol Plant Pathol 5:1–15

    Article  PubMed  Google Scholar 

  • Hammond-Kosack K, Tang S, Harrison K, Jones J (1998) The tomato Cf-9 disease resistance gene functions in tobacco and potato to confer responsiveness to the fungal avirulence gene product avr 9. The Plant Cell 10(8):1251–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Ishihara T, Sekine KT, Hase S, Kanayama Y, Seo S, Ohashi Y et al (2008) Overexpression of the Arabidopsis thaliana EDS5 gene enhances resistance to viruses. Plant Biol 10(4):451–461

    Article  CAS  PubMed  Google Scholar 

  • Kearney B, Staskawicz BJ (1990) Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature 346:385–386

    Article  CAS  PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Leite RP, Mohan SK (1990) Integrated management of the citrus bacterial canker disease caused by Xanthomonas campestris pv. citri in the State of Paraná, Brazil. Crop. Prot. 9, 3–7.

    Article  Google Scholar 

  • Li W, Hartung JS, Levy L (2006) Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J of Microbiol Methods 66:104–115

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta CT) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Venisse JS, Reynoird JP, Chevreau E (2003) Activation of three pathogen-inducible promoters of tobacco in transgenic pear (Pyrus communis L.) after abiotic and biotic elicitation. Planta 216:802–814

    CAS  PubMed  Google Scholar 

  • Malnoy M, Reynoird JP, Borejsza-Wysocka EE, Aldwinckle HS (2006) Activation of the pathogen-inducible Gst1 promoter of potato after elicitation by Venturia inaequalis and Erwinia amylovora in transgenic apple (Malus x domestica). Transgenic Res 15:83–93

    Article  CAS  PubMed  Google Scholar 

  • Martini N, Egen M, Rüntz I, Strittmatter G (1993) Promoter sequences of a potato pathogenesis-related gene mediate transcriptional activation selectively upon fungal infection. Mol Gen Genet 236:179–186

    Article  CAS  PubMed  Google Scholar 

  • McGarvey P, Kaper JM (1991) A simple and rapid method for screening transgenic plants using the PCR. Biotechniques 11(4):428–432

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Peña L, Cervera M, Navarro A, Durfin-Vila N, Navarro L (1995) Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep 14(10):616–619

    Article  PubMed  Google Scholar 

  • Peña L, Cervera M, Fagoaga C, Romero J, Ballester A, Soler N et al (2008) Citrus. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: tropical and subtropical fruits and nuts. Blackwell Publishing, Oxford, pp 1–62

    Chapter  Google Scholar 

  • Pérez-Molphe-Balch E, Ochoa-Alejo N (1998) Regeneration of transgenic plants of Mexican lime from Agrobacterium rhizogenes-transformed tissues. Plant Cell Rep 17(8):591–596

    Article  Google Scholar 

  • Schaad N, Postnikova E, Lacy GH, Sechler A, Agarkova I, Stromberg PE, Stromberg VK, Vidaver AK (2005) Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1915) Dye 1978 forms A, B/C/D, and E as X. smithii subsp. citri (ex Hasse) sp. nov. nom. rev. comb. nov., X. fuscans subsp. aurantifolii (ex Gabriel 1989) sp. nov. nom. rev. comb. nov., and X. alfalfae subsp. citrumelo (ex Riker and Jones) Gabriel et al. 1989 sp. nov. nom. rev. comb. nov.; X. campestris pv. malvacearum (ex smith 1901) Dye 1978 as X. smithii subsp. smithii nov. comb. nov. nom. nov.; X. campestris pv. alfalfae (ex Riker and Jones, 1935) dye 1978 as X. alfalfae subsp. alfalfae (ex Riker et al. 1935) sp. nov. nom. rev.; and ʺvar. fuscansʺ of X. campestris pv. phaseoli (ex Smith, 1987) Dye 1978 as X. fuscans subsp. fuscans sp. nov. Syst. Appl. Microbiol. 28, 494–518.

    Article  CAS  PubMed  Google Scholar 

  • Sendín LN, Filippone MP, Orce IG, Rigano L, Enrique R, Peña L, Vojnov AA, Marano MR, Castagnaro AP (2012) Transient expression of pepper Bs2 gene in Citrus limon as an approach to evaluate its utility for management of citrus canker disease. Plant Pathol 61:648–657

    Article  Google Scholar 

  • Swords, K.M.M., Dahlbeck D, Kearney B, Roy M, Staskawicz BJ (1996) Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthomonas campestris pv. vesicatoria avrBs2. J Bacteriol 178:4661–4669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci USA 96:14153–14158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thilmony RL, Chen Z, Bressan RA, Martin GB (1995) Expression of the tomato Pto gene in tobacco enhances resistance to Pseudomonas syringae pv. tabaci expressing avrPto. Plant Cell 7:1529–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vellicce G, Díaz Ricci JC, Hernández L, Castagnaro AP (2006) Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Res 15:57–68

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Song W, Ruan D, Sideris S, Ronald P, Ruan D, Sideris S, Ronald P (1996) The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol Plant-Microbe Interact 9:850–855

    Article  CAS  PubMed  Google Scholar 

  • Whitham S, McCormick S, Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA 93(16):8776–8781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohlgemuth H, Mittelstrass K, Kschieschan S, Bender J, Weigel HJ, Overmyer K, Kangasjärvi J, Sandermann H, Langebartels C (2002) Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ 25:717–726

    Article  CAS  Google Scholar 

  • Yu IC, Parker J, Bent AF (1998). Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc Natl Acad Sci USA 95, 7819–7824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by Estación Experimental Agroindustrial Obispo Colombres (EEAOC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT-2006-02082; PICT-2011-1833). We especially thank Dr. Beer for providing the pCPP1300 transformation plasmid, Dr. Pardo (ITANOA, Argentina) for the assistance in figures edition and Dr. Welin (ITANOA, Argentina), Dr. Felker (UCLA, EEUU) and Ms. Montivero for the critical reading of this manuscript and for reviewing the English version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Paula Filippone.

Additional information

Lorena Noelia Sendín and Ingrid Georgina Orce have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2017_586_MOESM1_ESM.jpg

Supplementary material Fig. S1 Molecular characterization of Bs2-transgenic lines. Analysis of copy number of L28 and L46 plants by means of Southern blot using HindIII enzyme with Bs2-probe; NTC: Non-transgenic control plant; C+: pGST1-BS2 (JPG 1109 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sendín, L.N., Orce, I.G., Gómez, R.L. et al. Inducible expression of Bs2 R gene from Capsicum chacoense in sweet orange (Citrus sinensis L. Osbeck) confers enhanced resistance to citrus canker disease. Plant Mol Biol 93, 607–621 (2017). https://doi.org/10.1007/s11103-017-0586-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-017-0586-8

Keywords

Navigation