Skip to main content
Log in

Functional characterization of tomato membrane-bound NAC transcription factors

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Genome-wide analysis was carried out to identify and analyze differential expression pattern of tomato membrane bound NAC transcription factors (SlNACMTFs) during stresses. Two biotic-stress-related SlNACMTFs have been characterized to elucidate their regulatory function.

Abstract

NAC transcription factors are known regulators of stress-related gene expression. As Stresses are perceived and transmitted by membrane-bound proteins, functional characterization of membrane-associated NAC transcription factors in tomato can reveal valuable insight about membrane-mediated stress-signalling. Tomato genome encodes 13 NAC genes which have predicted transmembrane domain(s) (SlNACMTFs). mRNA of 12 SlNACMTFs were readily detected in multiple tissues, and also in polysome isolated from leaf, confirming active transcription and translation from these genes occur under normal physiological condition. Additionally, most of the SlNACMTFs were differentially regulated during stresses and stress-related transcription factor binding sites are prevalent in their promoters. SlNACMTF3 and 8 were majorly regulated in biotic and abiotic stresses. Like other MTFs, SlNACMTF3 was translocated to the plasma membrane, whereas the C-terminus truncated (ΔC) form localized in the cytoplasm and the nucleus. Accordingly, the ΔC forms significantly influenced the activity of promoters harbouring NAC binding sites (NACbs). Furthermore, the NAC domain of these transcription factors could directly interact with an NACbs, and the proteins failed to regulate a promoter lacking a crucial NACbs. Interestingly, the type of influence to an NACbs containing promoter was dependent on the context of the NACbs, as the same SlNACMTF showed an alternative mode of regulation on different promoters, as well as the same promoter activity was oppositely regulated by two different SlNACMTF. Finally, both SlNACMTFs demonstrated the differential regulatory effect on the expression of several stress-related genes by interacting with the putative NACbs in their promoter region, suggesting their direct role in plant stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Gera H, Shwartz I, Shao MR, Shani E, Estelle M, Ori N (2012) ENTIRE and GOBLET promote leaflet development in tomato by modulating auxin response. Plant J 70:903–915

    Article  CAS  PubMed  Google Scholar 

  • Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez JP, Zinder M, Samach A, Eshed Y, Ori N (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136:823–832

    Article  CAS  PubMed  Google Scholar 

  • Chao DY, Luo YH, Shi M, Luo D, Lin HX (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res 15:796–810

    Article  CAS  PubMed  Google Scholar 

  • Du M, Zhai Q, Deng L, Li S, Li H, Yan L, Huang Z, Wang B, Jiang H, Huang T, Li CB, Wei J, Kang L, Li J, Li C (2014) Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. Plant Cell 26:3167–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Xie K, Xiong L (2014) Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. J Exp Bot 65:2119–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  CAS  PubMed  Google Scholar 

  • Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez J, López Núñez-Flores MJ, Gómez-Ros LV, Novo Uzal E, Esteban Carrasco A, Díaz J, Sottomayor M, Cuello J, Ros Barceló A (2009) Hormonal regulation of the basic peroxidase isoenzyme from Zinnia elegans. Planta 230:767–778

    Article  PubMed  Google Scholar 

  • Han Q, Zhang J, Li H, Luo Z, Ziaf K, Ouyang B, Wang T, Ye Z (2012) Identification and expression pattern of one stress-responsive NAC gene from Solanum lycopersicum. Mol Biol Rep 39:1713–1720

    Article  CAS  PubMed  Google Scholar 

  • Hasson A, Plessis A, Blein T, Adroher B, Grigg S, Tsiantis M, Boudaoud A, Damerval C, Laufs P (2011) Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development. Plant Cell 23:54–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendelman A, Stav R, Zemach H, Arazi T (2013) The tomato NAC transcription factor SlNAM2 is involved in flower-boundary morphogenesis. J Exp Bot 64:5497–5507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Wang Y, Wang S, Wu X, Yang K, Niu Y, Dai S (2012) Transcriptome-wide survey and expression analysis of stress-responsive NAC genes in Chrysanthemum lavandulifolium. Plant Sci 193–194:18

    Article  PubMed  Google Scholar 

  • Huang W, Miao M, Kud J, Niu X, Ouyang B, Zhang J, Ye Z, Kuhl JC, Liu Y, Xiao F (2013) SlNAC1, a stress-related transcription factor, is fine-tuned on both the transcriptional and the post-translational level. New Phytol 197:1214–1224

    Article  CAS  PubMed  Google Scholar 

  • Iwata Y, Koizumi N (2005) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci USA 102:5280–5285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SG, Park CM (2007) Membrane-mediated salt stress signaling in flowering time control. Plant Signal Behav 2:517–518

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Kim SG, Park JE, Park HY, Lim MH, Chua NH, Park CM (2006) A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell 18:3132–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Park BO, Yoo JH, Jung MS, Lee SM, Han HJ, Kim KE, Kim SH, Lim CO, Yun DJ, Lee SY, Chung WS (2007a) Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis. J Biol Chem 282:36292–36302

  • Kim SY, Kim SG, Kim YS, Seo PJ, Bae M, Yoon HK, Park CM (2007b) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res 35:203–213

  • Kim SG, Lee S, Seo PJ, Kim SK, Kim JK, Park CM (2010) Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice. Genomics 95:56–65

    Article  CAS  PubMed  Google Scholar 

  • Kou X, Wang S, Wu M, Guo R, Xue Z, Meng N, Tao X, Chen M, Zhang Y (2014) Molecular characterization and expression analysis of NAC family transcription factors in tomato. Plant Mol Biol Rep 32:501–516

    Article  CAS  Google Scholar 

  • Kundu P, Li M, Lu R, Stefani E, Toro L (2015) Regulation of transcriptional activation function of rat estrogen receptor α (ERα) by novel C-terminal splice inserts. Mol Cell Endocrinol 401:202–212

    Article  CAS  PubMed  Google Scholar 

  • Kunkel GR, Maser RL, Calvet JP, Pederson T (1986) U6 small nuclear RNA is transcribed by RNA polymerase III. Proc Natl Acad Sci USA 83:8575–8579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Ouyang Z, Zhang Y, Li X, Hong Y, Huang L, Liu S, Zhang H, Li D, Song F (2014) Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response. PLoS One 9:e102067

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma NN, Zuo YQ, Liang XQ, Yin B, Wang GD, Meng QW (2013). The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato. Physiol Plant 149:474–486

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Feng H, Meng X, Li D, Yang D, Wu C, Meng Q (2014) Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biol 14:351

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandal A, Sarkar D, Kundu S, Kundu P (2015) Mechanism of regulation of tomato TRN1 gene expression in late infection with tomato leaf curl New Delhi virus (ToLCNDV). Plant Sci 241:221–237

    Article  CAS  PubMed  Google Scholar 

  • Meng Q, Zhang C, Gai J, Yu D (2007) Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.). J Plant Physiol 164:1002–1012

    Article  CAS  PubMed  Google Scholar 

  • Mustroph A, Juntawong P, Bailey-Serres J (2009) Isolation of plant polysomal mRNA by differential centrifugation and ribosome immunopurification methods. Methods Mol Biol 553:109–126

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005a) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

  • Olsen AN, Ernst HA, Lo Leggio L, Skriver K (2005b) DNA-binding specificity and molecular functions of NAC transcription factors. Plant Sci 169:785–797

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    Article  CAS  PubMed  Google Scholar 

  • Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17:311–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo PJ (2014) Recent advances in plant membrane-bound transcription factor research: emphasis on intracellular movement. J Integr Plant Biol 56:334–342

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Park CM (2010) A membrane-bound NAC transcription factor as an integrator of biotic and abiotic stress signals. Plant Signal Behav 5:481–483

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Kim SG, Park CM (2008) Membrane-bound transcription factors in plants. Trends Plant Sci 13:550–556

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Kim MJ, Park JY, Kim SY, Jeon J, Lee YH, Kim J, Park CM (2010) Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant J 61:661–671

    Article  CAS  PubMed  Google Scholar 

  • Shamimuzzaman M, Vodkin L (2013) Genome-wide identification of binding sites for NAC and YABBY transcription factors and co-regulated genes during soybean seedling development by ChIP-Seq and RNA-SEq. BMC Genomics 14:477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao H, Wang H, Tang X (2015) NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh KB (1998) Transcriptional regulation in plants: the importance of combinatorial control. Plant Physiol 118:1111–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, Sastry EV, Singh V (2012) Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. Physiol Mol Biol Plants 18:45–50

    Article  PubMed  Google Scholar 

  • Singh AK, Sharma V, Pal AK, Acharya V, Ahuja PS (2013) Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). DNA Res 20:403–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su H, Zhang S, Yin Y, Zhu D, Han L (2015) Genome-wide analysis of NAM-ATAF1,2-CUC2 transcription factor family in Solanum lycopersicum. J Plant Biochem Biotechnol 24:176–183

    Article  CAS  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284:173–183

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Dane F (2013) NAC (NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway. Acta Physiol Plant 35:1397–1408

    Article  CAS  Google Scholar 

  • Wang H, Shao H, Tang X (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67

    PubMed  PubMed Central  Google Scholar 

  • Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Xie Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Huang X, Wu M, Wang Y, Chang Y, Liu K, Zhang J, Zhang Y, Zhang F, Yi L, Li T, Wang R, Tan G, Li C (2014) A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis. PLoS One 9:e83556

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang R, Deng C, Ouyang B, Ye Z (2011) Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Mol Biol Rep 38:857–863

    Article  CAS  PubMed  Google Scholar 

  • Yang YG, Lv WT, Li MJ, Wang B, Sun DM, Deng X (2013) Maize membrane-bound transcription factor Zmbzip17 is a key regulator in the cross-talk of ER quality control and ABA signaling. Plant Cell Physiol 54:2020

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Liu JS, Meng FN, Zhang ZZ, Long H, Lin WH, Luo XM, Wang ZY, Zhu SW (2016) ANAC005 is a membrane-associated transcription factor and regulates vascular development in Arabidopsis. J Integr Plant Biol 58:442

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The ToLCNDV agroinfiltration constructs used in this study were generous gifts from Prof. Sunil Mukherjee, ICGEB. Primers for miR167 detection were designed by Ms. Jayanti Jodder. Authors are thankful to Drs. Debabrata Basu and Shubho Chaudhuri for their support, and Central Instrument Facility (CIF) of Bose Institute for all sequencing services. Authors are also thankful to Mr. Sougata Bhattacharya for support in bioinformatic analysis. PB is thankful to UGC, Govt. of India for fellowship. This work is supported by a project from CSIR, Govt. of India to PK.

Author contributions

PB and PK designed the research. PB carried out all experiments. PB and PK analyzed the data. RD and AM have provided some reagents. PB and PK wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallob Kundu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, P., Das, R., Mandal, A. et al. Functional characterization of tomato membrane-bound NAC transcription factors. Plant Mol Biol 93, 511–532 (2017). https://doi.org/10.1007/s11103-016-0579-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0579-z

Keywords

Navigation