Skip to main content
Log in

Genome-wide identification of housekeeping genes in maize

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In the wake of recent progress of high throughput transcriptome profiling technologies, extensive housekeeping gene mining has been conducted in humans. However, very few studies have been reported in maize (Zea mays L.), an important crop plant, and none were conducted on a genome -wide level. In this study, we surveyed housekeeping genes throughout the maize transcriptome using RNA-seq and microarray techniques, and validated the housekeeping profile with quantitative polymerase chain reaction (qPCR) under a series of conditions including different genotypes and nitrogen supplies. Seven microarray datasets and two RNA-seq libraries representing 40 genotypes at more than 20 developmental stages were selected to screen for commonly expressed genes. A total of 1,661 genes showed constitutive expression in both microarray and RNA-seq datasets, serving as our starting housekeeping gene candidates. To determine for stably expressed housekeeping genes, NormFinder was used to select the top 20 % invariable genes to be the more likely candidates, which resulted in 48 and 489 entries from microarray and RNA-seq data, respectively. Among them, nine genes (2OG-Fe, CDK, DPP9, DUF, NAC, RPN, SGT1, UPF1 and a hypothetical protein coding gene) were expressed in all 40 maize diverse genotypes tested covering 16 tissues at more than 20 developmental stages under normal and stress conditions, implying these as being the most reliable reference genes. qPCR analysis confirmed the stable expression of selected reference gene candidates compared to two widely used housekeeping genes. All the reference gene candidates showed higher invariability than ACT and GAPDH. The hypothetical protein coding gene exhibited the most stable expression across 26 maize lines with different nitrogen treatments with qPCR, followed by CDK encoding the cyclin-dependent kinase. As the first study to systematically screen for housekeeping genes in maize, we identified candidates by examining the transcriptome atlas generated from RNA-seq and microarray technologies. The nine top-ranked qPCR-validated novel housekeeping genes provide a valuable resource of reference genes for maize gene expression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen CL, Jensen JK, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Barber RD, Harmer DW, Coleman RA, Clark BJ (2005) GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics 21:389–395

    Article  PubMed  CAS  Google Scholar 

  • Bremnera JM (1960) Determination of nitrogen in soil by the Kjeldahl method. J Agric Sci 55:11–33

    Article  Google Scholar 

  • Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Butte AJ, Dzau VJ, Glueck SB (2001) Further defining housekeeping, or “maintenance”, genes focus on “A compendium of gene expression in normal human tissues”. Physiol Genomics 7:95–96

    PubMed  CAS  Google Scholar 

  • Chen K, Fessehaie A, Arora R (2012) Selection of reference genes for normalizing gene expression during seed priming and germination using qPCR in Zea mays and Spinacia oleracea. Plant Mol Biol Rep 30:478–487

    Article  CAS  Google Scholar 

  • Coker JS, Davies E (2003) Selection of candidate housekeeping controls in tomato plants using EST data. Biotechniques 35:740–748

    PubMed  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11:485

    Article  PubMed  PubMed Central  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Danilevskaya ON, Meng X, Hou Z, Ananiev EV, Simmons CR (2008) A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol 146:250–264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davidson RM, Hansey CN, Gowda M, Childs KL, Lin H, Vaillancourt B, Sekhon RS, de Leon N, Kaeppler SM, Jiang N, Buell CR (2011) Utility of RNA sequencing for analysis of maize reproductive transcriptomes. Plant Genome 4:191–203

    Article  CAS  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Eisenberg E, Levanon EY (2003) Human housekeeping genes are compact. Trends Genet 19:362–365

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg E, Levanon EY (2013) Human housekeeping genes, revisited. Trends Genet 29:569–574

    Article  PubMed  CAS  Google Scholar 

  • Galli V, Messias RS, Anjos e Silva SD, Rombaldi CV (2013) Selection of reliable reference genes for quantitative real-time polymerase chain reaction studies in maize grains. Plant Cell Rep 32:1869–1877

    Article  PubMed  CAS  Google Scholar 

  • Goidin D, Mamessier A, Staquet MJ, Schmitt D, Berthier-Vergnes O (2001) Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate dehydrogenase and ß-Actin genes as internal standard for quantitative comparison of mRNA levels in invasive and noninvasive human melanoma cell subpopulations. Anal Biochem 295:17–21

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Wuytswinkel OV (2008) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6:609–618

    Article  PubMed  CAS  Google Scholar 

  • Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ, Gnirke A, Nusbaum C, Rinn JL, Lander ES, Regev A (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28:503–510

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hong SY, Seo PJ, Yang MS, Xiang F, Park CM (2008) Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol 8:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Infante C, Matsuoka MP, Asensio E, Cañavate JP, Reith M, Manchado M (2008) Selection of housekeeping genes for gene expression studies in larvae from flatfish using real-time PCR. BMC Mol Biol 9:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    Article  PubMed  CAS  Google Scholar 

  • Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25:1869–1872

    Article  PubMed  CAS  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee PD, Sladek R, Greenwood CMT, Hudson TJ (2002) Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res 12:292–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18:1851–1858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu S, Cai P, Hou N, Piao X, Wang H, Hung T, Chen Q (2012) Genome-wide identification and characterization of a panel of house-keeping genes in Schistosoma japonicum. Mol Biochem Parasit 182:75–82

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lunter G, Goodson M (2010) Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res 21:936–939

    Article  PubMed  Google Scholar 

  • Makarevitch I, Phillips RL, Springer NM (2008) Profiling expression changes caused by a segmental aneuploid in maize. BMC Genom 9:7

    Article  Google Scholar 

  • Manoli A, Sturaroa A, Trevisana S, Quaggiotti S, Nonis A (2012) Evaluation of candidate reference genes for qPCR in maize. J Plant Physiol 169:807–815

    Article  PubMed  CAS  Google Scholar 

  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  • Murphy D (2002) Gene expression studies using microarrays: principles, problems, and prospects. Adv Physiol Educ 26:256–270

    PubMed  Google Scholar 

  • Murphy SP, Simmons CR, Bass HW (2010) Structure and expression of the maize (Zea mays L) SUN-domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants. BMC Plant Biol 10:269

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nebreda AR (2006) CDK activation by non-cyclin proteins. Curr Opin Cell Biol 18:192–198

    Article  PubMed  CAS  Google Scholar 

  • Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  PubMed  CAS  Google Scholar 

  • Ramsköld D, Wang ET, Burge CB, Sandberg R (2009) An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput Biol 5:e1000598

    Article  PubMed  PubMed Central  Google Scholar 

  • Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalization of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227:1343–1349

    Article  PubMed  CAS  Google Scholar 

  • Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ et al (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7:909–912

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Scholtz JJ, Visser B (2013) Reference gene selection for qPCR gene expression analysis of rust-infected wheat. Physiol Mol Plant P 81:22–25

    Article  CAS  Google Scholar 

  • Sekhon RS, Lin H, Childs KL, Hansey CN, Buell CR, de Leon N, Kaeppler SM (2011) Genome-wide atlas of transcription during maize development. Plant J 66:553–563

    Article  PubMed  CAS  Google Scholar 

  • Selvey S, Thompson EW, Matthaei K, Lea RA, Irving MG, Griffiths LR (2001) β-Actin—an unsuitable internal control for RT-PCR. Mol Cell Probes 15:307–311

    Article  PubMed  CAS  Google Scholar 

  • Teste MA, Duquenne M, François JM, Parrou JL (2009) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol 10:99

    Article  PubMed  PubMed Central  Google Scholar 

  • Thellin O, Zorzi W, Lakaye B, Borman BD, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:291–295

    Article  PubMed  CAS  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, Raepe AD, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–11

    Article  Google Scholar 

  • Velculescu VE, Madden SL, Zhang L, Lash AE, Yu J, Rago C, Lal A, Wang CJ, Beaudry GA, Ciriello KM et al (1999) Analysis of human transcriptomes. Nat Genet 23:387–388

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang L, Wang Y, Zhou P (2013) Validation of reference genes for quantitative real-time PCR during Chinese wolfberry fruit development. Plant Physiol Biochem 70:304–310

    Article  PubMed  CAS  Google Scholar 

  • Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M (2000) Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics 2:143–147

    PubMed  CAS  Google Scholar 

  • Yang XS, Wu J, Ziegler TE, Yang X, Zayed A, Rajani MS, Zhou D, Basra AS, Schachtman DP, Peng M et al (2011) Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize. Plant Physiol 157:1841–1852

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhong H, Simons JW (1999) Direct comparison of GAPDH, β-Actin, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia. Biochem Biophys Res Commun 259:523–526

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, He F, Song S, Wang J, Yu J (2008) How many human genes can be defined as housekeeping with current expression data? BMC Genom 9:172

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant from the Natural Science Foundation of China (No. 31271728) and Jiangsu Agriculture Science and Technology Innovation Fund [cx(12)2032].

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Zhao.

Additional information

Feng Lin and Lu Jiang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 19 kb)

Supplementary material 2 (XLSX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F., Jiang, L., Liu, Y. et al. Genome-wide identification of housekeeping genes in maize. Plant Mol Biol 86, 543–554 (2014). https://doi.org/10.1007/s11103-014-0246-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0246-1

Keywords

Navigation