Skip to main content
Log in

Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In the field, perennial plants such as poplar (Populus spp.) must adapt to simultaneous exposure to various abiotic stresses, which can affect their growth and survival. However, the mechanisms for stress-specific adaption in response to different abiotic stresses remain unclear. Thus, understanding the unique acclimation process for each abiotic treatment will require a comprehensive and systematic comparison of the responses of poplar to different abiotic stresses. To compare the responses to multiple stresses, we compared physiological effects and transcriptome changes in poplar under four abiotic stresses (salinity, osmotic, heat and cold). Photosynthesis and antioxidant enzymes changed significantly after 6 h abiotic stress treatment. Therefore, using 6 h abiotic stress treatment groups for transcriptome analysis, we identified a set of 863 differentially expressed genes (653 up-regulated and 210 down-regulated) common to osmotic, salinity, heat and cold treatment. We also identified genes specific to osmotic (1,739), salinity (1,222), cold (2,508) and heat (3,200), revealing that salinity stress has the fewest differently-expressed genes. After gene annotation, we found differences in expression of genes related to electron transport, stomatal control, antioxidant enzymes, cell wall alteration, and phytohormone biosynthesis and signaling in response to various abiotic stresses. This study provides new insights to improve our understanding of the mechanisms by which poplar adapts under different abiotic stress conditions and provides new clues for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

CAT:

Catalase

Ci:

Intercellular CO2 concentration

CTK:

Cytokinins

ETR:

Electron transport rate

qP:

Fluorescence quenching coefficient

GA:

Gibberellins

Gs:

Stomatal conductance

MDA:

Malondialdehyde

Pn:

Net photosynthetic rate

POD:

Peroxidase

SOD:

Superoxide dismutase

Tr:

Transpiration rate

WUE:

Water use efficiency

References

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8:15–19

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol 50:601–639

    CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Bacon M (1999) The biochemical control of leaf expansion during drought. Plant Growth Regul 29:101–112

    Article  CAS  Google Scholar 

  • Baker NR, Harbinson J, Kramer DM (2007) Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant, Cell Environ 30:1107–1125

    Article  CAS  Google Scholar 

  • Baron K, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188:48–59

    Article  PubMed  CAS  Google Scholar 

  • Barrero JM, Piqueras P, González-Guzmán M, Serrano R, Rodríguez PL, Ponce MR, Micol JL (2005) A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. J Exp Bot 56:2071–2083

    Article  CAS  PubMed  Google Scholar 

  • Barrero JM, Rodríguez PL, Quesasa V, Piqueras P, Rosaponce M, Micol JL (2006) Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant, Cell Environ 29:2000–2008

    Article  CAS  Google Scholar 

  • Bell E, Creelman RA, Mullet J (1995) A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci USA 92:8675–8679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bestwick CS, Brown IR, Mansfield JW (1998) Localized changes in peroxidase activity accompanies hydrogen peroxide generation during the development of a non host hypersensitive reaction in lettuce. Plant Physiol 118:1067–1078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    Article  CAS  PubMed  Google Scholar 

  • Carrillo MC, Kanai S, Sato Y, Kitani K (1992) Age-related changes in antioxidant enzyme activities is region and organ, as well as sex, selective in the rat. Mech Age Dev 65:187–198

    Article  CAS  Google Scholar 

  • Centritto M, Brilli F, Fodale R, Loreto F (2011) Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings. Tree Physiol 31:258–261

    Article  CAS  Google Scholar 

  • Chen LH, Zhang S, Zhao H, Korpelainen H, Li CY (2010) Sex-related adaptive responses to interaction of drought and salinity in Populus yunnanensis. Plant, Cell Environ 33:1767–1778

    Article  CAS  Google Scholar 

  • Chen JH, Song YP, Zhang H, Zhang DQ (2013) Genome-wide analysis of gene expression in response to drought stress in Populus simonii. Plant Mol Biol Rep 31:946–952

    Article  CAS  Google Scholar 

  • Choi YS, Kim YM, Hwang OJ, Han YJ, Kim SY, Kim JI (2013) Overexpression of Arabidopsis ABF3 gene confers enhanced tolerance to drought and heat stress in creeping bentgrass. Plant Biotechnol Rep 7:165–173

    Article  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Cur Biol 15:1196–1200

    Article  CAS  Google Scholar 

  • Cominelli E, Galbiati M, Tonelli C (2010) Transcription factors controlling stomatal movements and drought tolerance. Transcription 1:41–45

    Article  PubMed Central  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  PubMed  Google Scholar 

  • Creelman RA, Mullet JA (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol 48:355–381

    CAS  Google Scholar 

  • Creelman RA, Bell E, Mullet JE (1992) Involvement of a lipoxygenase-like enzyme in abscisic acid biosynthesis. Plant Physiol 99:1258–1260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Devoto A, Ellis C, Magusin A, Chang HS, Chilcott C, Zhu T, Turner JG (2005) Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol 58:497–513

    Article  CAS  PubMed  Google Scholar 

  • Dewitte W, Scofield S, Alcasabas AA et al (2007) Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc Natl Acad Sci USA 36:14537–14542

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreases levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Ding Z, Li S, An X, Liu X, Qin H, Wang D (2009) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics 36:17–29

    Article  CAS  PubMed  Google Scholar 

  • Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–1566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Fernández-Velasco JG, Jamshidi A, Gong XS, Zhou J, Ueng RY (2001) Photosynthetic electron transfer through the cytochrome b6f complex can bypass cytochrome f. J Biol Chem 276:30598–30607

    Article  PubMed  Google Scholar 

  • Frugoli JA, Zhong HH, Nuccio ML, McCourt P, McPeek MA, Thomas TL, McClung CR (1996) Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol 112:327–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J 33:691–705

    Article  CAS  PubMed  Google Scholar 

  • Garbero M, Pedranzani H, Zirulnik F, Molina A, Pérez-Chaca MV, Vigliocco A, Abdala G (2011) Short-term cold stress in two cultivars of Digitaria eriantha: effects on stress-related hormones and antioxidant defense system. Acta Physiol Plant 33:497–507

    CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grene R (2002) Oxidative stress and acclimation mechanisms in plants. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville. doi:10.1199/tab.0036.1

    Google Scholar 

  • Harb A, Krishnan A, Ambavaram MMR, Pereira A (2010) Molecular and physiological analysis of drought stress in arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong LZ (2006) Overexpressing a NAM, ATAF and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang CJ, Zhao SY, Wang LC, Anjum SA, Chen M, Zhou HF, Zou CM (2013) Alteration in chlorophyll fluorescence, lipid peroxidation and antioxidant enzymes activities in hybrid ramie (Boehmeria nivea L.) under drought stress. Aust J Crop Sci 7:594–599

    CAS  Google Scholar 

  • Hutchison CE, Li J, Argueso C (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18:3073–3087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Ann Rev Plant Biol 58:435–458

    Article  CAS  Google Scholar 

  • Janz D, Behnke K, Schnitzler JP, Kanawati B, Schmitt-Kopplin P, Polle A (2010) Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biol 10:150

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jones L, McQueen-Mason S (2004) A role for expansins in dehydration and rehydration of the resurrection plant Craterostigma plantagineum. FEBS Lett 559:61–65

    Article  CAS  PubMed  Google Scholar 

  • Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci USA 107:2355–2360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JB, Kang JY, Kim SY (2004) Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J 2:459–466

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuras R, Wollman FA (1994) The assembly of cytochrome b6/f complexes: an approach using genetic transformation of the green alga Chlamydomonas reinhardtii. EMBO J 13:1019–1027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozakia K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci USA 107:2361–2366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SC, Lan W, Buchanan BB, Luan S (2009) A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci USA 106:21419–21424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee B, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

  • Leon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JA, Koornneef M (1996) Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J 10:655–661

    Article  CAS  PubMed  Google Scholar 

  • Li WX, Oono Y, Zhu J et al (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang YK, Dubos C, Dodd IC, Holroyd GH, Hetherington AM, Campbell MM (2005) AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr Biol 15:1201–1206

    Article  CAS  PubMed  Google Scholar 

  • Liu CC, Liu YG, Guo K, Fan D, Li G, Zheng YR, Yu LF, Yang R (2011) Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environ Exp Bot 71:174–183

    Article  CAS  Google Scholar 

  • Livingston AK, Cruz JA, Kohzuma K, Dhingr A, Kramera DM (2010) An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell 22:221–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maestrini P, Cavallini A, Rizzo M, Giordani T, Bernardi R, Durante M, Natali L (2009) Isolation and expression analysis of low temperature-induced genes in white poplar (Populus alba). J Plant Physiol 166:1544–1556

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Medina MI, Quesada MA, Pliego F, Botella MA, Valpuesta V (1999) Expression of the tomato peroxidase gene TPX1 in NaCl-adapted and unadapted suspension cells. Plant Cell Rep 18:680–683

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:1360–1385

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwerab S, Gollerya M, Van Breusegemb F (2004) The reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y et al (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishiyama R, Watanabe Y, Leyva-Gonzalezb MA (2013) Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc Natl Acad Sci 12:4840–4845

    Article  CAS  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850

    Article  CAS  PubMed  Google Scholar 

  • Onkokesung N, Gális I, von Dahl CC, Matsuoka K, Saluz HP, Baldwin IT (2010) Jasmonic acid and ethylene modulate local responses to wounding and simulated herbivory in Nicotiana attenuata leaves. Plant Physiol 153:785–798

  • Panchuk II, Volkov RA, Schŏffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panchuk II, Zentgraf U, Volkov RA (2005) Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana. Planta 222:926–932

    Article  CAS  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Pizzio GA, Rodriguez L, Antoni R, Gonzalez-Guzman M, Yunta C, Merilo E, Kollist H, Albert A, Rodriguez PL (2013) The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance. Plant Physiol 163:441–455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purev M, Kim YJ, Kim MK, Pulla RK, Yang DC (2010) Isolation of a novel catalase (Cat1) gene from Panax ginseng and analysis of the response of this gene to various stresses. Plant Physiol Biochem 48:451–460

    CAS  PubMed  Google Scholar 

  • Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161:1783–1794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rexroth S, Mullineaux CW, Ellinger D, Sendtko E, Rögner M, Koenig F (2011) The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains. Plant Cell 23:2379–2390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ristic Z, Momčilović I, Bukovnik U, Vara Prasad PV, Fu JM, DeRidder BP, Elthon TE, Mladenov N (2009) Rubisco activase and wheat productivity under heat-stress conditions. J Exp Bot 14:4003–4014

    Article  CAS  Google Scholar 

  • Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion M (2010) The role of tobacco aquaporin in improving water use efficiency, hydraulic conductivity and yield production under salt stress. Plant Physiol 152:245–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salvucci ME, Ogren WL (1996) The mechanism of Rubisco activase: insights from studies of the properties and structure of the enzyme. Photosynth Res 47:1–11

    Article  CAS  PubMed  Google Scholar 

  • Sancho MA, Milrad de Forchetti S, Pliego F, Valpuesta V, Quesada MA (1996) Peroxidase activity and isoenzymes in the culture medium of NaCl adapted tomato suspension cells. Plant Cell, Tissue Organ Cult 44:161–167

    Article  CAS  Google Scholar 

  • Schaller F (2001) Enzymes of the biosynthesis of octadecanoid derived signalling molecules. J Exp Bot 52:11–23

    Article  CAS  PubMed  Google Scholar 

  • Seo M, Koshiba T (2011) Transport of ABA from the site of biosynthesis to the site of action. J Plant Res 124:501–507

    Article  CAS  PubMed  Google Scholar 

  • Seo M, Peeters AJM, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JAD, Koornneef M, Kamiyai Y, Koshiba T (2000) The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci 97:12908–12913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skirycz A, De Bodt S, Obata T et al (2010) Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress. Plant Physiol 152:226–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signaling in response to environmental stresses. Acta Biochim Pol 54:39–50

    CAS  PubMed  Google Scholar 

  • Song YP, Chen QQ, Ci D, Zhang DQ (2012) Transcriptome profiling reveals differential transcript abundance in response to chilling stress in Populus simonii. Plant Cell Rep 32:1407–1425

    Article  CAS  Google Scholar 

  • Song YP, Ma KF, Ci D, Chen QQ, Tian JX, Zhang DQ (2013) Sexual dimorphic floral development in dioecious plants revealed by transcriptome, phytohormone, and DNA methylation analysis in Populus tomentosa. Plant Mol Biol 83:559–576

  • Song YP, Ma KF, Ci D, Zhan ZY, Zhang DQ (2014a) Biochemical, physiological and gene expression analysis reveals sex-specific differences in Populus tomentosa floral development. Physiol Plant 150:18–31

    Article  CAS  PubMed  Google Scholar 

  • Song YP, Chen QQ, Ci D, Shao XN, Zhang DQ (2014b) Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol 14:111

    Article  PubMed Central  PubMed  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    Article  CAS  PubMed  Google Scholar 

  • Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci 97:10625–10630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strauss SH, Martin FM (2004) Poplar genomics comes of age. New Phytol 164:1–4

    Article  CAS  Google Scholar 

  • Street NR, Skogstrőm O, Sjőodin A, Tucker J, Rodríguez-Acosta M, Nilsson P, Jansson S, Taylor G (2006) The genetics and genomics of the drought response in Populus. Plant J 48:321–324

    Article  CAS  PubMed  Google Scholar 

  • Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate and abscisic acid-induced stomatal closure. Plant Physiol 134:1536–1545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swamy PM, Smith B (1999) Role of abscisic acid in plant stress tolerance. Curr Sci 76:1220–1227

    CAS  Google Scholar 

  • Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, Blake PS, Burbidge A, Taylor IB (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J 23:363–374

    Article  CAS  PubMed  Google Scholar 

  • Tozzi E, Easlon HM, Richards JH (2013) Interactive effects of water, light and heat stress on photosynthesis in Fremont cottonwood. Plant, Cell Environ 36:1423–1434

    Article  CAS  Google Scholar 

  • Tuskan GA, DiFazio SP, Teichmann T (2004) Poplar genomics is getting popular: the impact of the poplar genome project on tree research. Plant Biol 6:2–4

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2001) Biotechnology of plant osmotic stress tolerance: physiological and molecular considerations. Acta Hort 560:285–292

    CAS  Google Scholar 

  • Wei ZZ, Du QZ, Zhang JF, Li BL, Zhang DQ (2012) Genetic diversity and population structure in Chinese indigenous poplar (Populus simonii) populations using microsatellite markers. Plant Mol Biol Rep 31:620–632

    Article  CAS  Google Scholar 

  • Wilkins O, Waldron L, Nahal H, Provart NJ, Campbell MM (2009) Genotype and time of day shape the Populus drought response. Plant J 60:703–715

    Article  CAS  PubMed  Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant, Cell Environ 27:717–724

    Article  CAS  Google Scholar 

  • Xu ZY, Lee KH, Dong T et al (2012) A vacuolar b-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in arabidopsis. Plant Cell 24:2184–2199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang JY, Zheng W, Tian Y, Zhou DW (2011) Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica 49:275–284

    Article  CAS  Google Scholar 

  • Yoshida T, Nishimura N, Kitahata N, Kuromori T, Ito T, Asami T, Shinozaki K, Hirayama T (2006) ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol 140:115–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol 39:439–473

    CAS  Google Scholar 

  • Zhu JJ, Zhang JL, Liu HC, Cao KF (2009) Photosynthesis, non-photochemical pathways and activities of antioxidant enzymes in a resilient evergreen oak under different climatic conditions from a valley-savanna in Southwest China. Physiol Plant 135:62–72

    Article  CAS  PubMed  Google Scholar 

  • Zhu JY, Sae-Seaw J, Wang ZY (2013) Brassinosteroid signaling. Development 140:1615–1620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the following sources: the Forestry Public Benefic Research Program (No. 201204306), and Project of the National Natural Science Foundation of China (No. 30600479, 30872042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqiang Zhang.

Additional information

The gene expression data reported here are available from NCBI with the GEO accession number GSE43872, GSE42530, GSE37608, GSE41557.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Ci, D., Tian, M. et al. Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses. Plant Mol Biol 86, 139–156 (2014). https://doi.org/10.1007/s11103-014-0218-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0218-5

Keywords

Navigation