Skip to main content
Log in

A developmentally regulated lipocalin-like gene is overexpressed in Tomato yellow leaf curl virus-resistant tomato plants upon virus inoculation, and its silencing abolishes resistance

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

To discover genes involved in tomato resistance to Tomato yellow leaf curl virus (TYLCV), we previously compared cDNA libraries from susceptible (S) and resistant (R) tomato lines. Among the genes preferentially expressed in R plants and upregulated by TYLCV infection was a gene encoding a lipocalin-like protein. This gene was termed Solanum lycopersicum virus resistant/susceptible lipocalin (SlVRSLip). The SlVRSLip structural gene sequence of R and S plants was identical. SlVRSLip was expressed in leaves during a 15-day window starting about 40 days after sowing (20 days after planting). SlVRSLip was upregulated by Bemisia tabaci (the TYLCV vector) feeding on R plant leaves, and even more strongly upregulated following whitefly-mediated TYLCV inoculation. Silencing of SlVRSLip in R plants led to the collapse of resistance upon TYLCV inoculation and to a necrotic response along the stem and petioles accompanied by ROS production. Contrary to previously identified tomato lipocalin gene DQ222981, SlVRSLip was not regulated by cold, nor was it regulated by heat or salt. The expression of SlVRSLip was inhibited in R plants in which the hexose transporter gene LeHT1 was silenced. In contrast, the expression of LeHT1 was not inhibited in SlVRSLip-silenced R plants. Hence, in the hierarchy of the gene network conferring TYLCV resistance, SlVRSLip is downstream of LeHT1. Silencing of another gene involved in resistance, a Permease-I like protein, did not affect the expression of SlVRSLip and LeHT1; expression of the Permease was not affected by silencing SlVRSLip or LeHT1, suggesting that it does not belong to the same network. The triple co-silencing of SlVRSLip, LeHT1 and Permease provoked an immediate cessation of growth of R plants upon infection and the accumulation of large amounts of virus. SlVRSLip is the first lipocalin-like gene shown to be involved in resistance to a plant virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Åkerstrom BD, Flower R, Salier JP (2000) Lipocalins: unity in diversity. Biochim Biophys Acta 1482:1–8

    Article  PubMed  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  PubMed  CAS  Google Scholar 

  • Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levin I (2009) Molecular dissection of Tomato yellow leaf curl virus (TYLCV) resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Gen 119:519–530

    Article  Google Scholar 

  • Aoki K, Yano K, Suzuki A, Kawamura S, Sakurai N, Suda K, Kurabayashi A, Suzuki T, Tsugane T, Watanabe M, Ooga K, Torii M, Narita T, Shin-i T, Kohara Y, Yamamoto N, Takahashi H, Watanabe Y, Egusa M, Kodama M, Ichinose Y, Kikuchi M, Fukushima S, Okabe A, Arie T, Sato Y, Yazawa K, Satoh S, Omura T, Ezura H, Shibata D (2010) Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genom 11:210

    Article  Google Scholar 

  • Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979

    Article  PubMed  CAS  Google Scholar 

  • Bolton MD (2009) Primary metabolism and plant defense—fuel for the fire. Mol Plant Microbe Interact 22:487–497

    Article  PubMed  CAS  Google Scholar 

  • Brinker M, Brosché M, Vinocur B, Abo-Ogiala A, Fayyaz P, Janz D, Ottow EA, Cullmann AD, Saborowski J, Kangasjärvi J, Altman A, Polle A (2010) Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation. Plant Physiol 154:1697–1709

    Article  PubMed  CAS  Google Scholar 

  • Buttner M, Sauer N (2000) Monosaccharide transporters in plants: structure, function and physiology. Biochim Biophys Acta 1465:263–274

    Article  PubMed  CAS  Google Scholar 

  • Charron J-BF, Breton G, Badawi M, Sarhan F (2002) Molecular and structural analyses of a novel temperature stress-induced lipocalin from wheat and Arabidopsis. FEBS Lett 517:129–132

    Article  Google Scholar 

  • Charron J-BF, Ouellet F, Pelletier M, Danyluk J, Chauve C, Sarhan F (2005) Identification, expression, and evolutionary analyses of plant lipocalins. Plant Physiol 139:2017–2028

    Article  PubMed  CAS  Google Scholar 

  • Charron J-BF, Ouellet F, Houde M, Sarhan F (2008) The plant apolipoprotein D ortholog protects Arabidopsis against oxidative stress. BMC Plant Biol 8:86

    Article  PubMed  Google Scholar 

  • Chen S, Gollop N, Heuer B (2009) Proteomic analysis of salt-stressed tomato (Solanum lycposersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. J Exp Bot 60:2005–2019

    Article  PubMed  CAS  Google Scholar 

  • Culver JN, Padmanabhan MS (2007) Virus-induced disease: altering host physiology one interaction at a time. Ann Review Phytopathol 45:221–243

    Article  CAS  Google Scholar 

  • Díaz-Pendón JA, Cañizares MC, Moriones E, Bejarano ER, Czosnek H, Navas-Castillo J (2010) Tomato yellow leaf curl viruses: ménage à trois between the virus complex, the plant, and the whitefly vector. Mol Plant Pathol 11:441–450

    Article  PubMed  Google Scholar 

  • Eybishtz A, Peretz Y, Sade D, Akad F, Czosnek H (2009) Silencing of a single gene in tomato plants resistant to Tomato yellow leaf curl virus renders them susceptible to the virus. Plant Mol Biol 71:157–171

    Article  PubMed  CAS  Google Scholar 

  • Eybishtz A, Peretz Y, Sade D, Gorovits R, Czosnek H (2010) Tomato yellow leaf curl virus (TYLCV) infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread and necrosis. Planta 231:537–548

    Article  PubMed  CAS  Google Scholar 

  • Faurobert M, Mihr C, Bertin N, Pawlowski T, Negroni L, Sommerer N, Causse M (2007) Major proteome variations associated with Cherry tomato pericarp development and ripening. Plant Physiol 143:1328–1346

    Article  Google Scholar 

  • Flower DR, North AC, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482:9–24

    Article  PubMed  CAS  Google Scholar 

  • Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, Sauer N, Hall JL, Williams LE (2003) The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atbetafruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol 132:821–829

    Article  PubMed  CAS  Google Scholar 

  • Gorovits R, Czosnek H (2008) Expression of stress-response proteins upon abiotic stress in tomato lines susceptible and resistant to Tomato yellow leaf curl virus. Plant Physiol Biochem 46:482–492

    Article  PubMed  CAS  Google Scholar 

  • Grzyb J, Latowski D, Strzałka K (2006) Lipocalins—a family portrait. J Plant Physiol 163:895–915

    Article  PubMed  CAS  Google Scholar 

  • He P, Shan L, Sheen J (2007) Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions. Cell Microbiol 9:1385–1396

    Article  PubMed  CAS  Google Scholar 

  • Ji Y, Scott JW, Hanson P, Graham E, Maxwell DP (2007) Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, The Netherlands, pp 343–362

    Chapter  Google Scholar 

  • Katagiri F (2004) A global view of defense gene expression regulation—a highly interconnected signaling network. Curr Opin Plant Biol 7:506–511

    Article  PubMed  CAS  Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protocols 4:363–371

    Article  CAS  Google Scholar 

  • Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 143:849–865

    Article  PubMed  CAS  Google Scholar 

  • Levesque-Tremblay G, Havaux M, Ouellet F (2009) The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress. Plant J 60:691–702

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  PubMed  CAS  Google Scholar 

  • Lozano-Durán R, Rosas-Díaz T, Luna AP, Bejarano ER (2011) Identification of host genes involved in geminivirus infection using a reverse genetics approach. PLoS One 6:e22383

    Article  PubMed  Google Scholar 

  • McCurdy DW, Dibley S, Cahyanegara R, MartinA A, Patrick JW (2010) Functional characterization and RNAi-mediated suppression reveals roles for hexose transporters in sugar accumulation by tomato fruit. Mol Plant 3:1049–1063

    Article  PubMed  CAS  Google Scholar 

  • Navot N, Pichersky E, Zeidan M, Zamir D, Czosnek H (1991) Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic molecule. Virology 185:151–161

    Article  PubMed  CAS  Google Scholar 

  • Nørholm MH, Nour-Eldin HH, Brodersen P, Mundy J, Halkier BA (2006) Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death. FEBS Lett 580:2381–2387

    Article  PubMed  Google Scholar 

  • Page D, Gouble B, Valot B, Bouchet JP, Callot C, Kretzschmar A, Causse M, Renard CMCG, Faurobert M (2010) Protective proteins are differentially expressed in tomato genotypes differing for their tolerance to low-temperature storage. Planta 232:483–500

    Article  PubMed  CAS  Google Scholar 

  • Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antiox Redox Signal 8:1757–1764

    Article  CAS  Google Scholar 

  • Puthoff DP, Holzer FM, Perring TM, Walling LL (2010) Tomato pathogenesis-related protein genes are expressed in response to Trialeurodes vaporariorum and Bemisia tabaci Biotype B feeding. J Chem Ecol 36:1271–1285

    Article  PubMed  CAS  Google Scholar 

  • Sánchez D, Ganfornina MD, Gutiérrez G, Marín A (2003) Exon-intron structure and evolution of the lipocalin gene family. Mol Biol Evol 20:775–783

    Article  PubMed  Google Scholar 

  • Suzuki K, Lareyre JJ, Sánchez D, Gutiérrez G, Araki Y, Matusik RJ, Orgebin-Crist MC (2004) Molecular evolution of epididymal lipocalin genes localized on mouse chromosome 2. Gene 339:49–59

    Article  PubMed  CAS  Google Scholar 

  • Uemura M, Tominaga Y, Nakagawara C, Shigematsu S, Minami A, Kawamura Y (2006) Responses of the plasma membrane to low temperatures. Physiol Plant 126:81–89

    Article  CAS  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  Google Scholar 

  • Van Ooijen G, van den Burg HA, Cornelissen BJC, Takken FLW (2007) Structure and function of resistance proteins in solanaceous plants. Annu Rev Phytopathol 45:43–72

    Article  PubMed  Google Scholar 

  • Vidavski F, Czosnek H (1998) Tomato breeding lines immune and tolerant to Tomato yellow leaf curl virus (TYLCV) issued from Lycopersicon hirsutum. Phytopathology 88:910–914

    Article  Google Scholar 

  • Vidavski F, Czosnek H, Gazit S, Levy D, Lapidot M (2008) Pyramiding of genes conferring resistance to Tomato yellow leaf curl virus from different wild tomato species. Plant Breed 127:625–631

    Article  Google Scholar 

  • Wahl R, Wippel K, Goos S, Kämper J, Sauer N (2010) A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS Biol 8:e1000303

    Article  PubMed  Google Scholar 

  • Zeidan M, Czosnek H (1991) Acquisition of Tomato yellow leaf curl virus by the whitefly Bemisia tabaci. J Gen Virol 72:2607–2614

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the U.S. Agency for International Development, Middle East Research and Cooperation (MERC) program to H.C. (GEG-G-00-02-00003-00), Project M21-037. Dr. Favi Vidavski and Hila Beeri (Tomatech Ltd, Rehovot, Israel) provided the R and S tomato seeds. The authors thank Prof. David Baulcombe and the Gatsby Charitable Foundation, The Sainsbury Laboratory, for providing the TRV vectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henryk Czosnek.

Additional information

Dagan Sade and Assaf Eybishtz: equal contribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sade, D., Eybishtz, A., Gorovits, R. et al. A developmentally regulated lipocalin-like gene is overexpressed in Tomato yellow leaf curl virus-resistant tomato plants upon virus inoculation, and its silencing abolishes resistance. Plant Mol Biol 80, 273–287 (2012). https://doi.org/10.1007/s11103-012-9946-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9946-6

Keywords

Navigation