Skip to main content
Log in

Phosphorylation and nitration levels of photosynthetic proteins are conversely regulated by light stress

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Using a label-free mass spectrometric approach, we investigated light-induced changes in the distribution of phosphorylated and nitrated proteins within subpopulations of native photosynthetic complexes in the thylakoid membrane of Arabidopsis thaliana leaves adapted to growth light (GL) and subsequently exposed to high light (HL). Eight protein phosphorylation sites were identified in photosystem II (PSII) and the phosphorylation level of seven was regulated by HL as determined based on peak areas from ion chromatograms of phosphorylated and non-phosphorylated peptides. Although the phosphorylation of PSII proteins was reported in the past, we demonstrated for the first time that two minor antenna LHCB4 isoforms are alternately phosphorylated under GL and HL conditions in PSII monomers, dimers and supercomplexes. A role of LHCB4 phosphorylation in state transition and monomerization of PSII under HL conditions is proposed. We determined changes in the nitration level of 23 tyrosine residues in five photosystem I (PSI) and nine PSII proteins and demonstrated for the majority of them a lower nitration level in PSI and PSII complexes and supercomplexes under HL conditions, as compared to GL. In contrast, the nitration level significantly increased in assembled/disassembled PSI and PSII subcomplexes under HL conditions. A possible role of nitration in (1) monomerization of LHCB1-3 trimers under HL conditions (2) binding properties of ferredoxin-NADP+ oxidoreductase to photosystem I, and (3) PSII photodamage and repair cycle, is discussed. Based on these data, we propose that the conversely regulated phosphorylation and nitration levels regulate the stability and turnover of photosynthetic complexes under HL conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8:15–19

    Article  PubMed  CAS  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Aro EM, Rokka A, Vener AV (2004) Determination of phosphoproteins in higher plant thylakoids. Methods Mol Biol 274:271–285

    PubMed  CAS  Google Scholar 

  • Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A, Battchikova N, Rintamaki E (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56:347–356

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  Google Scholar 

  • Barber J (1998) Photosystem two. Biochim Biophys Acta 1365:269–277

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (2002) Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32:797–803

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635

    Article  PubMed  CAS  Google Scholar 

  • Caffarri S, Kouril R, Kereiche S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28:3052–3063

    Article  PubMed  CAS  Google Scholar 

  • Chaki M, Fernandez-Ocana AM, Valderrama R, Carreras A, Esteban FJ, Luque F, Gomez-Rodriguez MV, Begara-Morales JC, Corpas FJ, Barroso JB (2009a) Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower-mildew interaction. Plant Cell Physiol 50:265–279

    Article  PubMed  CAS  Google Scholar 

  • Chaki M, Valderrama R, Fernandez-Ocana AM, Carreras A, Lopez-Jaramillo J, Luque F, Palma JM, Pedrajas JR, Begara-Morales JC, Sanchez-Calvo B, Gomez-Rodriguez MV, Corpas FJ, Barroso JB (2009b) Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. J Exp Bot 60:4221–4234

    Article  PubMed  CAS  Google Scholar 

  • Chuartzman SG, Nevo R, Shimoni E, Charuvi D, Kiss V, Ohad I, Brumfeld V, Reich Z (2008) Thylakoid membrane remodeling during state transitions in Arabidopsis. Plant Cell 20:1029–1039

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, del Rio LA, Barroso JB (2007) Need of biomarkers of nitrosative stress in plants. Trends Plant Sci 12:436–438

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Chaki M, Leterrier M, Barroso JB (2009) Protein tyrosine nitration: a new challenge in plants. Plant Signal Behav 4:920–923

    Article  PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Scaloni A, Giustarini D, Cavarra E, Tell G, Lungarella G, Colombo R, Rossi R, Milzani A (2005) Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. Mass Spectrom Rev 24:55–99

    Article  PubMed  CAS  Google Scholar 

  • Danielsson R, Suorsa M, Paakkarinen V, Albertsson PA, Styring S, Aro EM, Mamedov F (2006) Dimeric and monomeric organization of photosystem II. Distribution of five distinct complexes in the different domains of the thylakoid membrane. J Biol Chem 281:14241–14249

    Article  PubMed  CAS  Google Scholar 

  • Galetskiy DN, Lohscheider JN, Kononikhin AS, Kharybin ON, Popov IA, Adamska I, Nikolaev EN (2011a) Light stress photodynamics of chlorophyll-binding proteins in Arabidopsis thaliana thylakoid membranes revealed by high-resolution mass spectrometric studies. Bioorg Khim 37:119–131

    PubMed  CAS  Google Scholar 

  • Galetskiy D, Lohscheider JN, Kononikhin AS, Popov IA, Nikolaev EN, Adamska I (2011b) Mass spectrometric characterization of photooxidative protein modifications in Arabidopsis thaliana thylakoid membranes. Rapid Commun Mass Spectrom 25:184–190

    Article  PubMed  CAS  Google Scholar 

  • Ganeteg U, Kulheim C, Andersson J, Jansson S (2004) Is each light-harvesting complex protein important for plant fitness? Plant Physiol 134:502–509

    Article  PubMed  CAS  Google Scholar 

  • Garab G, Cseh Z, Kovacs L, Rajagopal S, Varkonyi Z, Wentworth M, Mustardy L, Der A, Ruban AV, Papp E, Holzenburg A, Horton P (2002) Light-induced trimer to monomer transition in the main light-harvesting antenna complex of plants: thermo-optic mechanism. Biochemistry 41:15121–15129

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Perez S, Quijano C, Romero N, Melo TB, Radi R, Arellano JB (2008) Peroxynitrite inhibits electron transport on the acceptor side of higher plant photosystem II. Arch Biochem Biophys 473:25–33

    PubMed  CAS  Google Scholar 

  • Hansson M, Vener AV (2003) Identification of three previously unknown in vivo protein phosphorylation sites in thylakoid membranes of Arabidopsis thaliana. Mol Cell Proteomics 2:550–559

    PubMed  CAS  Google Scholar 

  • Huesgen PF, Schuhmann H, Adamska I (2009) Deg/HtrA proteases as components of a network for photosystem II quality control in chloroplasts and cyanobacteria. Res Microbiol 160:726–732

    Article  PubMed  CAS  Google Scholar 

  • Ischiropoulos H (2003) Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun 305:776–783

    Article  PubMed  CAS  Google Scholar 

  • Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4:236–240

    Article  PubMed  Google Scholar 

  • Jansson S (2006) A protein family saga: from photoprotection to light-harvesting (and back?) In: Demmig-Adams B, Adams III, W.W., Matto, A.K. (eds) Photoprotection, photoinhibition, gene regulation, and environment, vol 21. Advances in photosynthesis and respiration. Springer. Netherlands, pp 145–153

  • Kargul J, Barber J (2008) Photosynthetic acclimation: structural reorganisation of light harvesting antenna-role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins. FEBS J 275:1056–1068

    Article  PubMed  CAS  Google Scholar 

  • Kersey PJ, Duarte J, Williams A, Karavidopoulou Y, Birney E, Apweiler R (2004) The international protein index: an integrated database for proteomics experiments. Proteomics 4:1985–1988

    Article  PubMed  CAS  Google Scholar 

  • Khatoon M, Inagawa K, Pospisil P, Yamashita A, Yoshioka M, Lundin B, Horie J, Morita N, Jajoo A, Yamamoto Y (2009) Quality control of photosystem II: thylakoid unstacking is necessary to avoid further damage to the D1 protein and to facilitate D1 degradation under light stress in spinach thylakoids. J Biol Chem 284:25343–25352

    Article  PubMed  CAS  Google Scholar 

  • Kissner R, Nauser T, Bugnon P, Lye PG, Koppenol WH (1997) Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem Res Toxicol 10:1285–1292

    Article  PubMed  CAS  Google Scholar 

  • Klimmek F, Sjodin A, Noutsos C, Leister D, Jansson S (2006) Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. Plant Physiol 140:793–804

    Article  PubMed  CAS  Google Scholar 

  • Komayama K, Khatoon M, Takenaka D, Horie J, Yamashita A, Yoshioka M, Nakayama Y, Yoshida M, Ohira S, Morita N, Velitchkova M, Enami I, Yamamoto Y (2007) Quality control of photosystem II: cleavage and aggregation of heat-damaged D1 protein in spinach thylakoids. Biochim Biophys Acta 1767:838–846

    Article  PubMed  CAS  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  Google Scholar 

  • Nield J, Redding K, Hippler M (2004) Remodeling of light-harvesting protein complexes in Chlamydomonas in response to environmental changes. Eukaryot Cell 3:1370–1380

    Article  PubMed  CAS  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Pesaresi P, Hertle A, Pribil M, Schneider A, Kleine T, Leister D (2010a) Optimizing photosynthesis under fluctuating light: the role of the Arabidopsis STN7 kinase. Plant Signal Behav 5:21–25

    Article  PubMed  CAS  Google Scholar 

  • Pesaresi P, Pribil M, Wunder T, Leister D (2010b) Dynamics of reversible protein phosphorylation in thylakoids of flowering plants: the roles of STN7, STN8 and TAP38. Biochim Biophys Acta 1807:887–896

    PubMed  Google Scholar 

  • Pospisil P (2009) Production of reactive oxygen species by photosystem II. Biochim Biophys Acta 1787:1151–1160

    Article  PubMed  CAS  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101:4003–4008

    Article  PubMed  CAS  Google Scholar 

  • Radi R (2009) Peroxynitrite and reactive nitrogen species: the contribution of ABB in two decades of research. Arch Biochem Biophys 484:111–113

    Article  PubMed  CAS  Google Scholar 

  • Rayala SK, Martin E, Sharina IG, Molli PR, Wang X, Jacobson R, Murad F, Kumar R (2007) Dynamic interplay between nitration and phosphorylation of tubulin cofactor B in the control of microtubule dynamics. Proc Natl Acad Sci USA 104:19470–19475

    Article  PubMed  CAS  Google Scholar 

  • Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J, Gruissem W, Baginsky S (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150:889–903

    Article  PubMed  CAS  Google Scholar 

  • Reisinger V, Eichacker LA (2007) How to analyze protein complexes by 2D blue native SDS-PAGE. Proteomics 7(Suppl 1):6–16

    Article  PubMed  Google Scholar 

  • Reisinger V, Eichacker LA (2008) Solubilization of membrane protein complexes for blue native PAGE. J Proteomics 71:277–283

    Article  PubMed  CAS  Google Scholar 

  • Rochaix JD (2007) Role of thylakoid protein kinases in photosynthetic acclimation. FEBS Lett 581:2768–2775

    Article  PubMed  CAS  Google Scholar 

  • Storf S, Jansson S, Schmid VH (2005) Pigment binding, fluorescence properties, and oligomerization behaviour of Lhca5, a novel light-harvesting protein. J Biol Chem 280:5163–5168

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama N, Nakagami H, Mochida K, Daudi A, Tomita M, Shirasu K, Ishihama Y (2008) Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol 4:193

    Article  PubMed  Google Scholar 

  • Tikkanen M, Piippo M, Suorsa M, Sirpio S, Mulo P, Vainonen J, Vener AV, Allahverdiyeva Y, Aro EM (2006) State transitions revisited-a buffering system for dynamic low light acclimation of Arabidopsis. Plant Mol Biol 62:779–793

    Article  PubMed  Google Scholar 

  • Tikkanen M, Nurmi M, Kangasjarvi S, Aro EM (2008a) Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light. Biochim Biophys Acta 1777:1432–1437

    Article  PubMed  CAS  Google Scholar 

  • Tikkanen M, Nurmi M, Suorsa M, Danielsson R, Mamedov F, Styring S, Aro EM (2008b) Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants. Biochim Biophys Acta 1777:425–432

    Article  PubMed  CAS  Google Scholar 

  • Tikkanen M, Grieco M, Kangasjarvi S, Aro EM (2010) Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light. Plant Physiol 152:723–735

    Article  PubMed  CAS  Google Scholar 

  • Vener AV (2007) Environmentally modulated phosphorylation and dynamics of proteins in photosynthetic membranes. Biochim Biophys Acta 1767:449–457

    Article  PubMed  CAS  Google Scholar 

  • Vener AV, Harms A, Sussman MR, Vierstra RD (2001) Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. J Biol Chem 276:6959–6966

    Article  PubMed  CAS  Google Scholar 

  • Wittig I, Braun HP, Schagger H (2006) Blue native PAGE. Nat Protoc 1:418–428

    Article  PubMed  CAS  Google Scholar 

  • Wormuth D, Heiber I, Shaikali J, Kandlbinder A, Baier M, Dietz KJ (2007) Redox regulation and antioxidative defence in Arabidopsis leaves viewed from a systems biology perspective. J Biotechnol 129:229–248

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y (2001) Quality control of photosystem II. Plant Cell Physiol 42:121–128

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N, Sasaki T (2008) Quality control of photosystem II: impact of light and heat stresses. Photosynth Res 98:589–608

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Russian Foundation for Basic Research (project 10-04-13306-RT_ofi and 09-04-00725-a), a program of the Russian Ministry of Science and Education (project 14.740.11.0755 and 16.740.11.0369) and by the Deutsche Forschungsgemeinschaft (AD92/1-3 to I.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Adamska.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 674 kb)

Supplementary material 2 (PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galetskiy, D., Lohscheider, J.N., Kononikhin, A.S. et al. Phosphorylation and nitration levels of photosynthetic proteins are conversely regulated by light stress. Plant Mol Biol 77, 461 (2011). https://doi.org/10.1007/s11103-011-9824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11103-011-9824-7

Keywords

Navigation