Skip to main content
Log in

Introducing an RNA editing requirement into a plastid-localised transgene reduces but does not eliminate functional gene transfer to the nucleus

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In higher plants, DNA transfer from the plastid (chloroplast) genome to the nucleus is a frequent, ongoing process. However, there has been uncertainty over whether this transfer occurs by a direct DNA mechanism or whether RNA intermediates are involved. Previous experiments utilising transplastomic Nicotiana tabacum (tp7 and tp17) enabled the detection of plastid-to-nucleus transfer in real time. To determine whether RNA intermediates are involved in this transfer, transplastomic lines (tpneoACG) were generated containing, in their plastid genomes, a nuclear promoter-driven kanamycin resistance gene (neo) with a start codon that required plastid RNA editing but otherwise identical to tp7 and tp17. Therefore it was expected that kanamycin resistance would only be acquired following RNA-mediated transfer of neo to the nucleus. Screening of tpneoACG progeny revealed several kanamycin-resistant plants, each of which contained the neo gene located in the nucleus. Surprisingly, neo was unedited in all these plants, indicating that neoACG was active in the absence of an edited start codon and suggesting that RNA intermediates were not involved in the transfers. However, analysis of tpneoACG revealed that only a low proportion of transcripts potentially able to mediate neo transfer were edited, thus precluding unequivocal conclusions regarding the role of RNA in plastid-to-nucleus transfer. The low proportion of edited transcripts was found to be due to predominant antisense neo transcripts, rather than to low editing efficiency of the sense transcripts. This study highlights a number of important considerations in the design of experiments utilising plastid RNA editing. The results also suggest that RNA editing sites reduce but do not eliminate functional plastid-to-nucleus gene transfer. This is relevant both in an evolutionary context and in placing RNA editing-dependent genes in the plastid genome as a means of transgene containment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Daley DO, Qiu YL, Whelan J, Palmer JD (2000) Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408:354–357

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2000) Sense from nonsense: how the genetic information of chloroplasts is altered by RNA editing. Biochimie 82:549–557

    Article  PubMed  CAS  Google Scholar 

  • Bock R, Hermann M, Kossel H (1996) In vivo dissection of cis-acting determinants for plastid RNA editing. EMBO J 15:5052–5059

    PubMed  CAS  Google Scholar 

  • Chaudhuri S, Carrer H, Maliga P (1995) Site-specific factor involved in the editing of the psbL mRNA in tobacco plastids. EMBO J 14:2951–2957

    PubMed  CAS  Google Scholar 

  • Cornelissen M, Vandewiele M (1989) Nuclear transcriptional activity of the tobacco plastid psbA promoter. Nucleic Acids Res 17:19–29

    Article  PubMed  CAS  Google Scholar 

  • Curtis IS, Power JB, Davey MR (1995) NPTII assays for measuring gene expression and enzyme activity in transgenic plants. In: Jones H (ed) Methods in molecular biology; plant gene transfer and expression protocols. Humana Press Inc, Clifton, pp 149–159

    Chapter  Google Scholar 

  • Deigan KE, Li TW, Mathews DH, Weeks KM (2009) Accurate SHAPE-directed RNA structure determination. Proc Natl Acad Sci USA 106:97–102

    Article  PubMed  CAS  Google Scholar 

  • Depeiges A, Degroote F, Espagnol MC, Picard G (2006) Translation initiation by non-AUG codons in Arabidopsis thaliana transgenic plants. Plant Cell Rep 25:55–61

    Article  PubMed  CAS  Google Scholar 

  • Deusch O, Landan G, Roettger M, Gruenheit N, Kowallik KV, Allen JF, Martin W, Dagan T (2008) Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Mol Biol Evol 25:748–761

    Article  PubMed  CAS  Google Scholar 

  • Grohmann L, Brennicke A, Schuster W (1992) The mitochondrial gene encoding ribosomal protein S12 has been translocated to the nuclear genome in Oenothera. Nucleic Acids Res 20:5641–5646

    Article  PubMed  CAS  Google Scholar 

  • Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 6. doi:10.1371/journal.pgen.1000834

  • Huang CY, Ayliffe MA, Timmis JN (2003) Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72–76

    Article  PubMed  CAS  Google Scholar 

  • Huang CY, Ayliffe MA, Timmis JN (2004) Simple and complex nuclear loci created by newly transferred chloroplast DNA in tobacco. Proc Natl Acad Sci USA 101:9710–9715

    Article  PubMed  CAS  Google Scholar 

  • Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Dokiya Y, Kumazawa Y, Sugita M (2002) Non-AUG translation initiation of mRNA encoding plastid-targeted phage-type RNA polymerase in Nicotiana sylvestris. Biochem Biophys Res Commun 299:57–61

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AH, Timmis JN (2011) The origin and characterization of new nuclear genes originating from a cytoplasmic organellar genome. Mol Biol Evol. doi:10.1093/molbev/msr021

  • Lutz KA, Bosacchi MH, Maliga P (2006) Plastid marker-gene excision by transiently expressed CRE recombinase. Plant J 45:447–456

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5:164–172

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    Article  PubMed  CAS  Google Scholar 

  • Matsuo M, Ito Y, Yamauchi R, Obokata J (2005) The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux. Plant Cell 17:665–675

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Noutsos C, Richly E, Leister D (2005) Generation and evolutionary fate of insertions of organelle DNA in the nuclear genomes of flowering plants. Genome Res 15:616–628

    Article  PubMed  CAS  Google Scholar 

  • Noutsos C, Kleine T, Armbruster U, DalCorso G, Leister D (2007) Nuclear insertions of organellar DNA can create novel patches of functional exon sequences. Trends Genet 23:597–601

    Article  PubMed  CAS  Google Scholar 

  • Nugent JM, Palmer JD (1991) RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell 66:473–481

    Article  PubMed  CAS  Google Scholar 

  • Richly E, Leister D (2004a) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21:1081–1084

    Article  PubMed  CAS  Google Scholar 

  • Richly E, Leister D (2004b) NUPTs in sequenced eukaryotes and their genomic organization in relation to NUMTs. Mol Biol Evol 21:1972–1980

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci USA 104:6998–7002

    Article  PubMed  CAS  Google Scholar 

  • Shafer KS, Hanekamp T, White KH, Thorsness PE (1999) Mechanisms of mitochondrial DNA escape to the nucleus in the yeast Saccharomyces cerevisiae. Curr Genet 36:183–194

    Article  PubMed  CAS  Google Scholar 

  • Sheppard AE, Ayliffe MA, Blatch L, Day A, Delaney SK, Khairul-Fahmy N, Li Y, Madesis P, Pryor AJ, Timmis JN (2008) Transfer of plastid DNA to the nucleus is elevated during male gametogenesis in tobacco. Plant Physiol 148:328–336

    Article  PubMed  CAS  Google Scholar 

  • Stegemann S, Bock R (2006) Experimental reconstruction of functional gene transfer from the tobacco plastid genome to the nucleus. Plant Cell 18:2869–2878

    Article  PubMed  CAS  Google Scholar 

  • Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100:8828–8833

    Article  PubMed  CAS  Google Scholar 

  • Stupar RM, Lilly JW, Town CD, Cheng Z, Kaul S, Buell CR, Jiang J (2001) Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci USA 98:5099–5103

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc Natl Acad Sci USA 104:7003–7008

    Article  PubMed  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  PubMed  CAS  Google Scholar 

  • Tsang HH, Wiese KC (2010) SARNA-predict: accuracy improvement of RNA secondary Structure prediction using permutation-based simulated annealing. IEEE/ACM Trans Comput Biol Bioinf 7:727–740

    Article  CAS  Google Scholar 

  • Wamboldt Y, Mohammed S, Elowsky C, Wittgren C, de Paula WBM, Mackenzie SA (2009) Participation of leaky ribosome scanning in protein dual targeting by alternative translation initiation in higher plants. Plant Cell 21:157–167

    Article  PubMed  CAS  Google Scholar 

  • Woischnik M, Moraes CT (2002) Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res 12:885–893

    PubMed  CAS  Google Scholar 

  • Yu YS, Rambo T, Currie J, Saski C, Kim HR, Collura K, Thompson S, Simmons J, Yang TJ, Nah G et al (2003) In-depth view of structure, activity, and evolution of rice chromosome 10. Science 300:1566–1569

    Article  CAS  Google Scholar 

  • Zoubenko OV, Allison LA, Svab Z, Maliga P (1994) Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res 22:3819–3824

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Google Scholar 

Download references

Acknowledgments

We thank Yuan Li for technical assistance. This research was supported under the Australian Research Council’s Discovery Projects funding scheme (project numbers DP0557496 and DP0667006). AD was supported by the BBSRC (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy N. Timmis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 256 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheppard, A.E., Madesis, P., Lloyd, A.H. et al. Introducing an RNA editing requirement into a plastid-localised transgene reduces but does not eliminate functional gene transfer to the nucleus. Plant Mol Biol 76, 299–309 (2011). https://doi.org/10.1007/s11103-011-9764-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9764-2

Keywords

Navigation