Skip to main content

Advertisement

Log in

Characterization of a CLE processing activity

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Proteins containing a conserved motif known as the CLE domain are found widely distributed across land plants. While the functions of most CLE proteins are unknown, specific CLE proteins have been shown to control shoot meristem, root and vascular development. This has been best studied for CLV3 which is required for stem cell differentiation at shoot and flower meristems. In vivo evidence indicates that the CLE domain is the functional region for CLV3, and that it is proteolytically processed from the CLV3 precursor protein. But the mechanism and activity responsible for this processing is poorly understood. Here we extend analysis of an in vitro CLE processing activity and show that in vitro cleavage occurs at Arg70, exactly matching in vivo maturation. We provide evidence that related processing activities are present in multiple tissues and species. We show that efficient protease recognition can occur with as little as four residues upstream of the CLE domain, and that the conserved arginine at position +1 and conserved acidic residues at positions −2 and/or −3 are required for efficient cleavage. Finally, we provide evidence that the N-terminal processing enzyme is a secreted serine protease while C-terminal processing may occur via a progressive carboxypeptidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619

    Article  PubMed  CAS  Google Scholar 

  • Casamitjana-Martinez E, Hofhuis HF, Xu J, Liu CM, Heidstra R, Scheres B (2003) Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Curr Biol 13:1435–1441

    Article  PubMed  CAS  Google Scholar 

  • Clark SE (1997) Organ formation at the vegetative shoot meristem. Plant Cell 9:1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Clark SE, Running MP, Meyerowitz EM (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121:2057–2067

    CAS  Google Scholar 

  • Cock JM, McCormick S (2001) A large family of genes that share homology with CLAVATA3. Plant Physiol 126:939–942

    Article  PubMed  CAS  Google Scholar 

  • DeYoung BJ, Clark SE (2001) Signaling through the CLAVATA1 receptor complex. Plant Mol Biol 46:505–513

    Article  PubMed  CAS  Google Scholar 

  • DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE (2006) The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J 45:1–16

    Article  PubMed  CAS  Google Scholar 

  • Fiers M, Golemiec E, Xu J, van der Geest L, Heidstra R, Stiekema W, Liu CM (2005) The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. Plant Cell 17:2542–2553

    Article  PubMed  CAS  Google Scholar 

  • Fiers M, Golemiec E, van der Schors R, van der Geest L, Li KW, Stiekema WJ, Liu CM (2006) The CLAVATA3/ESR motif of CLAVATA3 is functionally independent from the nonconserved flanking sequences. Plant Physiol 141:1284–1292

    Article  PubMed  CAS  Google Scholar 

  • Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Han L, Hymes M, Denver R, Clark SE (2010) CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification. Plant J 63:899–900

    Article  Google Scholar 

  • Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845

    Article  PubMed  CAS  Google Scholar 

  • Jeong S, Trotochaud AE, Clark SE (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11:1925–1934

    Article  PubMed  CAS  Google Scholar 

  • Kayes JM, Clark SE (1998) CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125:3843–3851

    PubMed  CAS  Google Scholar 

  • Kondo T, Nakamura T, Yokomine K, Sakagami Y (2008) Dual assay for MCLV3 activity reveals structure-activity relationship of CLE peptides. Biochem Biophys Res Commun 377:312–316

    Article  PubMed  CAS  Google Scholar 

  • Ni J, Clark SE (2006) Evidence for functional conservation, sufficiency, and proteolytic processing of the CLAVATA3 CLE domain. Plant Physiol 140:1–8

    Article  Google Scholar 

  • Oelkers K, Goffard N, Weiller GF, Gresshoff PM, Mathesius U, Frickey T (2008) Bioinformatic analysis of the CLE signaling peptide family. BMC Plant Biol 8:1

    Article  PubMed  Google Scholar 

  • Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008) Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319:294

    Article  PubMed  CAS  Google Scholar 

  • Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009) A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 5:878–880

    Article  Google Scholar 

  • Rojo E, Sharma VK, Kovaleva V, Raikhel NV, Fletcher JC (2002) CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell 14:969–977

    Article  PubMed  CAS  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  PubMed  CAS  Google Scholar 

  • Stenvik GE, Tandstad NM, Guo Y, Shi CL, Kristiansen W, Holmgren A, Clark SE, Aalen RB, Butenko MA (2008) The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell 20:1805–1817

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was support by grant USDA-2006-35304-17403 to S.E.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E. Clark.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 539 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, J., Guo, Y., Jin, H. et al. Characterization of a CLE processing activity. Plant Mol Biol 75, 67–75 (2011). https://doi.org/10.1007/s11103-010-9708-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9708-2

Keywords

Navigation