Skip to main content
Log in

Enhanced drought tolerance in Arabidopsis via genetic manipulation aimed at the reduction of glucosamine-induced ROS generation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In animals, high glucose exerts some of its deleterious effects by activation of the hexosamine biosynthesis pathway (HBP), a branch of the glycolytic pathway that produces amino sugars (Daniels et al. in Mol Endocrinol 7:1041–1048, 1993; Du et al. in Proc Natl Acad Sci USA 97:12222–12226, 2000). Glucosamine (GlcN) is a naturally occurring amino sugar produced by amidation of fructose-6-phosphate. Previously, we observed that glucosamine (GlcN) inhibits hypocotyl elongation in Arabidopsis thaliana by a process involving the significant increase of reactive oxygen species. The present study investigated the relationship between GlcN-induced ROS generation and abiotic stress responses in Arabidopsis by generating two types of transgenic plant. Scavenging of endogenous GlcN by ectopic expression of E. coli glucosamine-6-phosphate deaminase (NagB) was observed to confer enhanced tolerance to oxidative, drought, and cold stress. Consistent with this result, overproduction of GlcN by the ectopic expression of E. coli glucosamine-6-phosphate synthase (GlmS) induced cell death at an early stage. Taken together, these data suggest that genetic manipulation of endogenous GlcN level can effectively lead to the generation of abiotic stress-tolerant transgenic crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abarca D, Roldin M, Martin M, Sabater B (2001) Arabidopsis thaliana ecotype Cvi shows an increased tolerance to photo-oxidative stress and contains a new chloroplastic copper/zinc superoxide dismutase isoenzyme. J Exp Bot 52(360):1417–1425

    Article  CAS  PubMed  Google Scholar 

  • Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM (2007) Specific roles of alpha- and gamma-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol 143:1720–1738

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Añorve LI, Bustos-Jaimes I, Calcagno ML, Plumbridge J (2009) Allosteric regulation of glucosamine-6-phosphate deaminase (NagB) and growth of Escherichia coli on glucosamine. J Bacteriol 191:6401–6407

    Article  PubMed  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Bailey CJ, Turner SL (2004) Glucosamine-induced insulin resistance in L6 muscle cells. Diabetes Obes Metab 6:293–298

    Article  CAS  PubMed  Google Scholar 

  • Bradford et al (1976) Anal Biochem 72, 248

  • Burow M, Zhang ZY, Ober JA, Lambrix VM, Wittstock U, Gershenzon J, Kliebenstein DJ (2008) ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis. Phytochemistry 69:663–671

    Article  CAS  PubMed  Google Scholar 

  • Buse MG (2006) Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol 290:E1–E8

    CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  CAS  PubMed  Google Scholar 

  • Daniels MC, Kansal P, Smith TM, Paterson AJ, Kudlow JE, McClain DA (1993) Glucose regulation of transforming growth factor alpha expression is mediated by products of the hexosamine biosynthesis pathway. Mol Endocrinol 7:1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J, Brownlee M (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA 97:12222–12226

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Zhang W, Li B, Wang Y, Li K, Sodmergen, Han C, Zhang Y, Li X (2010) An endoplasmic reticulum response pathway mediates programmed cell death of root tip induced by water stress in Arabidopsis. New Phytol 186:681–695

    Article  CAS  PubMed  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Gill T, Sreenivasulu Y, Kumar S, Singh Ahuja P (2010) Over-expression of superoxide dismutase exhibits lignification of vascular structures in Arabidopsis thaliana. J Plant Physiol 167:757–760

    Article  CAS  PubMed  Google Scholar 

  • Giraud E, Ho LH, Clifton R et al (2008) The absence of Alternative Oxidase 1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol 147:595–610

    Article  CAS  PubMed  Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Heart E, Choi WS, Sung CK (2000) Glucosamine-induced insulin resistance in 3T3–L1 adipocytes. Am J Physiol Endocrinol Metab 278:E103–E112

    CAS  PubMed  Google Scholar 

  • Helenius A (1994) How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell 5:253–265

    CAS  PubMed  Google Scholar 

  • Jaspers P, Kangasjärvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiol Plant 138(4):405–413

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 20:3901–3907

    Google Scholar 

  • Jiang H, Wang S, Dang L, Wang S, Chen H, Wu Y, Jiang X, Wu PA (2005) A novel short-root gene encodes a glucosamine-6-phosphate acetyltransferase required for maintaining normal root cell shape in rice. Plant Physiol 138m:232–242

    Article  Google Scholar 

  • Ju HW, Koh EJ, Kim SH, Kim KI, Lee H, Hong SW (2009) Glucosamine causes overproduction of reactive oxygen species, leading to repression of hypocotyl elongation through a hexokinase-mediated mechanism in Arabidopsis. J Plant Physiol 166:203–212

    Article  CAS  PubMed  Google Scholar 

  • Kalamorz F, Reichenbach B, März W, Rak B, Görke B (2007) Feedback control of glucosamine-6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in Escherichia coli. Mol Microbiol 65:1518–1533

    Article  CAS  PubMed  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203

    Article  CAS  PubMed  Google Scholar 

  • Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA 103:18008–18013

    Article  CAS  PubMed  Google Scholar 

  • Liang SH, Zhang W, McGrath BC, Zhang P, Cavener DR (2006) PERK (eIF2alpha kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis. Biochem J 393:201–209

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Masso-Welsh P, Di Y, Cai J, Shen J, Subjeck JR (1993) The 170-kDa glucose-regulated stress protein is an endoplasmic reticulum protein that binds immunoglobulin. Mol Biol Cell 4:1109–1119

    CAS  PubMed  Google Scholar 

  • Malhotra J, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9:2277–2293

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766

    Article  CAS  PubMed  Google Scholar 

  • Miskovic D, Salter-Cid L, Ohan N, Flajnik M, Heikkila JJ (1997) Isolation and characterization of a cDNA encoding a Xenopus immunoglobulin binding protein, BiP (GRP78). Comp Biochem Physiol 116:227–234

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Morin MJ, Porter CW, McKernan P, Bernacki RJ (1983) The biochemical and ultrastructural effects of tunicamycin and D-glucosamine in L1210 leukemic cells. J Cell Physiol 114:162–172

    Article  CAS  PubMed  Google Scholar 

  • Oakley et al (1980) Anal Biochem 105:361–363

  • Raciti GA, Iadicicco C, Ulianich L, Vind BF, Gaster M, Andreozzi F, Longo M, Teperino R, Ungaro P, Di Jeso B, Formisano P, Beguinot F, Miele C (2010) Glucosamine-induced endoplasmic reticulum stress affects GLUT4 expression via activating transcription factor 6 in rat and human skeletal muscle cells. Diabetologia 53:955–965

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  PubMed  Google Scholar 

  • Serrato AJ, Perez-Ruiz JM, Spinola MC, Cejudo FJ (2004) A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J Biol Chem 279:43821–43827

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Shi QH, Zhu ZJ (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exp Bot 63:317–326

    Article  CAS  Google Scholar 

  • Taylor NL, Yew-Foon Tan YF, Jacoby RP, Millar AH (2009) Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes. J Proteomics 72:367–378

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Ahmad P, Panda BB, Tuteja R (2009) Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases. Mutat Res 681:134–149

    Article  CAS  PubMed  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by Micro-RNA in Arabidopsis. J Biol Chem 282:16369–16378

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Korea Research Foundation to Hojoung Lee (grant # 2009-0065693) and in part by a grant from Korea Research Foundation to Suk-Whan Hong (grant #2009-0074729 and 2010-0020141).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suk-Whan Hong or Hojoung Lee.

Additional information

Seung Hee Chu and Ha-na Noh contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2010_9691_MOESM1_ESM.jpg

Figure S1. Cold stress tolerance of wild-type and NagB-ox plants. (A) Plates with 7-day-old seedlings grown at room temperature were transferred to a 4°C chamber with light for 7 days. The photograph was taken at the end of the cold treatment. (B) Root lengths were measured from (A) and plotted. (JPEG 41 kb)

11103_2010_9691_MOESM2_ESM.jpg

Figure S2. Two-DE Analysis of Col-0 and NagB-ox plants subjected to glucosamine treatment. Two-week-old col-0 and NagB-ox plantlets were grown on control media and then sampled or treated for 4 h with 1 mM glucosamine. Specific proteins exhibiting large differences in expression were analyzed by MALDI-TOF (JPEG 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, S.H., Noh, Hn., Kim, S. et al. Enhanced drought tolerance in Arabidopsis via genetic manipulation aimed at the reduction of glucosamine-induced ROS generation. Plant Mol Biol 74, 493–502 (2010). https://doi.org/10.1007/s11103-010-9691-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9691-7

Keywords

Navigation