Skip to main content
Log in

Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Seed dormancy is genetically determined with substantial environmental influence mediated, at least in part, by the plant hormone abscisic acid (ABA). The ABA-related transcription factor ABI3/VP1 (ABA INSENSITIVE3/VIVIPAROUS1) is widespread among green plants. Alternative splicing of its transcripts appears to be involved in regulating seed dormancy, but the role of ABI3/VP1 goes beyond seeds and dormancy. In contrast, DOG1 (DELAY OF GERMINATION 1), a major quantitative trait gene more specifically involved in seed dormancy, was so far only known from Arabidopsis thaliana (AtDOG1) and whether it also has roles during the germination of non-dormant seeds was not known. Seed germination of Lepidium sativum (‘garden cress’) is controlled by ABA and its antagonists gibberellins and ethylene and involves the production of apoplastic hydroxyl radicals. We found orthologs of AtDOG1 in the Brassicaceae relatives L. sativum (LesaDOG1) and Brassica rapa (BrDOG1) and compared their gene structure and the sequences of their transcripts expressed in seeds. Tissue-specific analysis of LesaDOG1 transcript levels in L. sativum seeds showed that they are degraded upon imbibition in the radicle and the micropylar endosperm. ABA inhibits germination in that it delays radicle protrusion and endosperm weakening and it increased LesaDOG1 transcript levels during early germination due to enhanced transcription and/or inhibited degradation. A reduced decrease in LesaDOG1 transcript levels upon ABA treatment is evident in the late germination phase in both tissues. This temporal and ABA-related transcript expression pattern suggests a role for LesaDOG1 in the control of germination timing of non-dormant L. sativum seeds. The possible involvement of the ABA-related transcription factors ABI3 and ABI5 in the regulation of DOG1 transcript expression is discussed. Other species of the monophyletic genus Lepidium showed coat or embryo dormancy and are therefore highly suited for comparative seed biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso-Blanco C, Bentsink L, Hanhart CJ, Blankestijn de Vries H, Koornneef M (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164:711–729

    PubMed  Google Scholar 

  • Alonso-Blanco C, Aarts MG, Bentsink L, Keurentjes JJ, Reymond M, Vreugdenhil D, Koornneef M (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21:1877–1896

    PubMed  Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    Google Scholar 

  • Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F (2009) Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol 150:1006–1021

    PubMed  Google Scholar 

  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16

    Google Scholar 

  • Bassel GW, Mullen RT, Bewley JD (2006) ABI3 expression ceases following, but not during, germination of tomato and Arabidopsis seeds. J Exptl Bot 57:1291–1297

    Google Scholar 

  • Beaudoin N, Serizet C, Gosti F, Giraudat J (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12:1103–1115

    PubMed  Google Scholar 

  • Bentsink L, Koornneef M (2008) Seed dormancy and germination. In: Somerville CR, Meyerowitz EM (eds) The arabidopsis book. American Society of Plant Biologists, Rockville, MD

    Google Scholar 

  • Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA 103:17042–17047

    PubMed  Google Scholar 

  • Bethke PC, Libourel IGL, Aoyama N, Chung Y-Y, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1188

    PubMed  Google Scholar 

  • Bewley JD (1997a) Breaking down the walls—a role for endo-ß-mannanase in release from seed dormancy? Trends Plant Sci 2:464–469

    Google Scholar 

  • Bewley JD (1997b) Seed germination and dormancy. Plant Cell 9:1055–1066

    PubMed  Google Scholar 

  • Bies-Etheve N, da Silva Conceicao A, Giraudat J, Koornneef M, Leon-Kloosterziel K, Valon C, Delseny M (1999) Importance of the B2 domain of the Arabidopsis ABI3 protein for Em and 2S albumin gene regulation. Plant Mol Biol 40:1045–1054

    PubMed  Google Scholar 

  • Bowman JL, Bruggemann H, Lee JY, Mummenhoff K (1999) Evolutionary changes in floral structure within Lepidium L. (Brassicaceae). Int J Plant Sci 160:917–929

    PubMed  Google Scholar 

  • Cadman CSC, Toorop PE, Hilhorst HWM, Finch-Savage WE (2006) Gene expression profiles of Arabidopsis Cvi seed during cycling through dormant and non-dormant states indicate a common underlying dormancy control mechanism. Plant J 46:805–822

    PubMed  Google Scholar 

  • Cao X, Costa LM, Biderre-Petit C, Kbhaya B, Dey N, Perez P, McCarty DR, Gutierrez-Marcos JF, Becraft PW (2007) Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize. Plant Physiol 143:720–731

    PubMed  Google Scholar 

  • Carrera E, Holman T, Medhurst A, Dietrich D, Footitt S, Theodoulou FL, Holdsworth MJ (2008) Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant J 53:214–224

    PubMed  Google Scholar 

  • Casaretto J, Ho T-hD (2003) The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell 15:271–284

    PubMed  Google Scholar 

  • Chandler JW, Bartels D (1997) Structure and function of the vp1 gene homologue from the resurrection plant Craterostigma plantagineum Hochst. Mol Gen Genet 256:539–546

    PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Google Scholar 

  • Chao WS, Foley ME, Horvath DP, Anderson JV (2007) Signals regulating dormancy in vegetative buds. Int J Plant Devel Biol 1:49–56

    Google Scholar 

  • Chiwocha SDS, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross ARS, Kermode AR (2005) The etr1–2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J 42:35–48

    PubMed  Google Scholar 

  • Cho D, Shin D, Jeon BW, Kwak JM (2009) ROS-mediated ABA signaling. J Plant Biol 52:102–113

    Google Scholar 

  • Clerkx EJM, Blankestijin-DeVries H, Ruys GJ, Groot SPC, Koornneef M (2004) Genetic differences in seed longevity of various Arabidopsis mutants. Physiol Plant 121:448–461

    Google Scholar 

  • da Silva EAA, Toorop PE, van Aelst AC, Hilhorst HWM (2004) Abscisic acid controls embryo growth potential and endosperm cap weakening during coffee (Coffea arabica cv. Rubi) seed germination. Planta 220:251–261

    PubMed  Google Scholar 

  • Debeaujon I, Koornneef M (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol 122:415–424

    PubMed  Google Scholar 

  • Debeaujon I, Léon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122:403–413

    PubMed  Google Scholar 

  • Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ (2005) A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol 137:831–834

    PubMed  Google Scholar 

  • Desikan R, Last K, Harrett-Williams R, Tagliavia C, Harter K, Hooley R, Hancock JT, Neill SJ (2006) Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J 47:907–916

    PubMed  Google Scholar 

  • Downie B, Bewley JD (1996) Dormancy in white spruce (Picea glauca [Moench.] Voss.) seeds is imposed by tissues surrounding the embryo. Seed Sci Res 6:9–15

    Google Scholar 

  • Fan J, Niu X, Wang Y, Ren G, Zhuo T, Yang Y, Lu BR, Liu Y (2007) Short, direct repeats (SDRs)-mediated post-transcriptional processing of a transcription factor gene OsVP1 in rice (Oryza sativa). J Exptl Bot 58:3811–3817

    Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    PubMed  Google Scholar 

  • Finch-Savage WE, Cadman CSC, Toorop PE, Lynn JR, Hilhorst HWM (2007) Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant J 51:60–78

    PubMed  Google Scholar 

  • Footitt S, Ingouff M, Clapham D, von Arnold S (2003) Expression of the viviparous 1 (Pavp1) and p34(Cdc2) protein kinase (Cdc2Pa) genes during somatic embryogenesis in Norway spruce (Picea abies [L.] Karst). J Exptl Bot 54:1711–1719

    Google Scholar 

  • Franzke A, German D, Al-Shehbaz IA, Mummenhoff K (2009) Arabidopsis family ties: molecular phylogeny and age estimates in Brassicaceae. Taxon 58:1–13

    Google Scholar 

  • Fry SC, Dumville JC, Miller JG (2001) Fingerprinting of polysaccharides attacked by hydroxyl radicals in vitro and in the cell walls of ripening pear fruit. Biochem J 357:729–737

    PubMed  Google Scholar 

  • Fukuhara T, Bohnert HJ (2000) The expression of a Vp1-like gene and seed dormancy in Mesembryanthemum crystallinum. Genes Genet Syst 75:203–209

    PubMed  Google Scholar 

  • Gagete AP, Riera M, Franco L, Rodrigo MI (2009) Functional analysis of the isoforms of an ABI3-like factor of Pisum sativum generated by alternative splicing. J Exptl Bot 60:1703–1714

    Google Scholar 

  • Gerjets T, Scholefield D, Foulkes MJ, Lenton JR, Holdsworth MJ (2009) An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses. J Exptl Bot. doi:10.1093/jxb/erp329

    Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117–1126

    PubMed  Google Scholar 

  • Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Heß B, Machackova I, Fischer U, Leubner-Metzger G (2007) 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.)—a comparative study of fruits and seeds. J Exptl Bot 58:3047–3060

    Google Scholar 

  • Hewson H (1981) The genus Lepidium L. (Brassicaceae) in Australia. Brunonia 4:217–308

    Google Scholar 

  • Hiwasa K, Kinugasa Y, Amano S, Hashimoto A, Nakano R, Inaba A, Kubo Y (2003) Ethylene is required for both the initiation and progression of softening in pear (Pyrus communis L.) fruit. J Exptl Bot 54:771–779

    Google Scholar 

  • Hobo T, Kowyama Y, Hattori T (1999) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci USA 96:15348–15353

    PubMed  Google Scholar 

  • Hoecker U, Vasil IK, McCarty DR (1995) Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize. Genes Dev 9:2459–2469

    PubMed  Google Scholar 

  • Hoecker U, Vasil IK, McCarty DR (1999) Signaling from the embryo conditions Vp1-mediated repression of alpha-amylase genes in the aleurone of developing maize seeds. Plant J 19:371–377

    PubMed  Google Scholar 

  • Holdsworth M, Kurup S, McKibbin R (1999) Molecular and genetic mechanisms regulating the transition from embryo development to germination. Trends Plant Sci 4:275–280

    Google Scholar 

  • Holdsworth M, Bentsink L, Koornneef M (2006) Conserved mechanisms of dormancy and germination as targets for manipulation of agricultural problems. In: Varshney RK, Koeber RMD (eds) Model plants, crop improvement. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, pp 11–32

    Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    PubMed  Google Scholar 

  • Hollung K, Espelund M, Schou K, Jakobsen KS (1997) Developmental, stress and ABA modulation of mRNA levels for bZip transcription factors and Vp1 in barley embryos and embryo-derived suspension cultures. Plant Mol Biol 35:561–571

    PubMed  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540

    PubMed  Google Scholar 

  • Iglesias-Fernandez R, Matilla A (2009) After-ripening alters the gene expression pattern of oxidases involved in the ethylene and gibberellin pathways during the early imbibition of Sisymbrium officinale L. seeds. J Exptl Bot 60:1645–1661

    Google Scholar 

  • Iuchi S, Suzuki H, Kim Y-C, Iuchi A, Kuromori T, Ueguchi-Tanaka M, Asami T, Yamaguchi I, Matsuoka M, Kobayashi M, Nakajima M (2007) Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal. Plant J 50:958–966

    PubMed  Google Scholar 

  • Johansson E, Olsson O, Nystrom T (2004) Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. J Biol Chem 279:22204–22208

    PubMed  Google Scholar 

  • Jones HD, Kurup S, Peters NCB, Holdsworth MJ (2000) Identification and analysis of proteins that interact with the Avena fatua homologue of the maize transcription factor VIVIPAROUS 1. Plant J 21:133–142

    PubMed  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    PubMed  Google Scholar 

  • Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Ann Rev Plant Biol 55:141–172

    Google Scholar 

  • Kotak S, Vierling E, Baumlein H, von Koskull-Doring P (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19:182–195

    PubMed  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Google Scholar 

  • Kukavica B, Mojovic M, Vuccinic Z, Maksimovic V, Takahama U, Jovanovic SV (2009) Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production. Plant Cell Physiol 50:304–317

    PubMed  Google Scholar 

  • Kurup S, Jones HD, Holdsworth MJ (2000) Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J 21:143–155

    PubMed  Google Scholar 

  • Kwak JM, Nguyen V, Schroeder JI (2006) The role of reactive oxygen species in hormonal responses. Plant Physiol 141:323–329

    PubMed  Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. Hort Science 22:371–377

    Google Scholar 

  • Laserna MP, Sanchez RA, Botto JF (2008) Light-related loci controlling seed germination in Ler × Cvi and Bay-0 × Sha recombinant inbred-line populations of Arabidopsis thaliana. Ann Bot 102:631–642

    PubMed  Google Scholar 

  • Lazarova G, Zeng Y, Kermode AR (2002) Cloning and expression of an ABSCISIC ACID-INSENSITIVE 3 (ABI3) gene homologue of yellow-cedar (Chamaecyparis nootkatensis). J Exptl Bot 53:1219–1221

    Google Scholar 

  • Lee JY, Mummenhoff K, Bowman JL (2002) Allopolyploidization and evolution of species with reduced floral structures in Lepidium L. (Brassicaceae). Proc Natl Acad Sci USA 99:16835–16840

    PubMed  Google Scholar 

  • Leubner-Metzger G (2002) Seed after-ripening and over-expression of class I ß-1, 3-glucanase confer maternal effects on tobacco testa rupture and dormancy release. Planta 215:959–968

    PubMed  Google Scholar 

  • Leubner-Metzger G (2005) ß-1, 3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. Plant J 41:133–145

    PubMed  Google Scholar 

  • Leubner-Metzger G (2007) Samendormanz und Keimungskontrolle: Gene, Umweltfaktoren und Klimawandel. Vorträge für Pflanzenzüchtung 72:87–104

    Google Scholar 

  • Leubner-Metzger G, Petruzzelli L, Waldvogel R, Vögeli-Lange R, Meins F Jr (1998) Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I ß-1, 3-glucanase during tobacco seed germination. Plant Mol Biol 38:785–795

    PubMed  Google Scholar 

  • Linkies A, Müller K, Morris K, Turečkovác V, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner-Metzger G (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination; a comparative approach using Lepidium sativum (cress) and Arabidopsis thaliana. Plant Cell (in press)

  • Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217:658–667

    PubMed  Google Scholar 

  • Liu P-P, Koizuka N, Homrichhausen TM, Hewitt JR, Martin RC, Nonogaki H (2005) Large-scale screening of Arabidopsis enhancer-trap lines for seed germination-associated genes. Plant J 41:936–944

    PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand B, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32:317–328

    PubMed  Google Scholar 

  • Lorkovic ZJ, Wieczorek Kirk DA, Lambermon MH, Filipowicz W (2000) Pre-mRNA splicing in higher plants. Trends Plant Sci 5:160–167

    PubMed  Google Scholar 

  • Manz B, Müller K, Kucera B, Volke F, Leubner-Metzger G (2005) Water uptake and distribution in germinating tobacco seeds investigated in vivo by nuclear magnetic resonance imaging. Plant Physiol 138:1538–1551

    PubMed  Google Scholar 

  • Marella HH, Quatrano RS (2007) The B2 domain of VIVIPAROUS1 is bi-functional and regulates nuclear localization and transactivation. Planta 225:863–872

    PubMed  Google Scholar 

  • Marella HH, Sakata Y, Quatrano RS (2006) Characterization and functional analysis of ABSCISIC ACID INSENSITIVE3-like genes from Physcomitrella patens. Plant J 46:1032–1044

    PubMed  Google Scholar 

  • Matilla AJ, Matilla-Vazquez MA (2008) Involvement of ethylene in seed physiology. Plant Sci 175:87–97

    Google Scholar 

  • McCarty DR, Carson CB, Stinard PS, Robertson DS (1989) Molecular analysis of viviparous-1: An abscisic acid-insensitive mutant of maize. Plant Cell 1:523–532

    PubMed  Google Scholar 

  • McKibbin RS, Wilkinson MD, Bailey PC, Flintham JE, Andrew LM, Lazzeri PA, Gale MD, Lenton JR, Holdsworth MJ (2002) Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species. Proc Natl Acad Sci USA 99:10203–10208

    PubMed  Google Scholar 

  • Millar AA, Jacobsen JV, Ross JJ, Helliwell CA, Poole AT, Scofield G, Reid JB, Gubler F (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8’-hydroxylase. Plant J 45:942–954

    PubMed  Google Scholar 

  • Mönke G, Altschmied L, Tewes A, Reidt W, Mock HP, Bäumlein H, Conrad U (2004) Seed-specific transcription factors ABI3 and FUS3: molecular interaction with DNA. Planta 219:158–166

    PubMed  Google Scholar 

  • Müller K, Tintelnot S, Leubner-Metzger G (2006) Endosperm-limited Brassicaceae seed germination: Abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol 47:864–877

    PubMed  Google Scholar 

  • Müller K, Carstens AC, Linkies A, Torres MA, Leubner-Metzger G (2009a) The NADPH-Oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytol 184:885–897

    PubMed  Google Scholar 

  • Müller K, Linkies A, Vreeburg RAM, Fry SC, Krieger-Liszkay A, Leubner-Metzger G (2009b) In vivo cell wall loosening by hydroxyl radicals during cress (Lepidium sativum L.) seed germination and elongation growth. Plant Physiol 150:1855–1865

    PubMed  Google Scholar 

  • Mummenhoff K, Brüggemann H, Bowman JL (2001) Chloroplast DNA phylogeny and biogeography of Lepidium (Brassicaceae). Am J Bot 88:2051–2063

    Google Scholar 

  • Mummenhoff K, Linder P, Friesen N, Bowman JL, Lee J-Y, Franzke A (2004) Molecular evidence for bicontinental hybridogenous genomic constitution in Lepidium sensu stricto (Brassicaceae) species from Australia and New Zealand. Am J Bot 91:254–261

    Google Scholar 

  • Mummenhoff K, Polster A, Muhlhausen A, Theissen G (2009) Lepidium as a model system for studying the evolution of fruit development in Brassicaceae. J Exptl Bot 60:1503–1513

    Google Scholar 

  • Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709

    PubMed  Google Scholar 

  • Nakamura S, Lynch TJ, Finkelstein RR (2001) Physical interactions between ABA response loci of Arabidopsis. Plant J 26:627–635

    PubMed  Google Scholar 

  • Nambara E, Keith K, McCourt P, Naito S (1995) A regulatory role for the ABI3 gene in the establishment of embryo mturation in Arabidopsis thaliana. Develop 121:629–636

    Google Scholar 

  • Nonogaki H (2006) Seed germination—the biochemical and molecular mechanisms. Breed Sci 56:93–105

    Google Scholar 

  • Oracz K, Bouteau HE-M, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50:452–465

    PubMed  Google Scholar 

  • Oracz K, El-Maarouf-Bouteau H, Bogatek R, Corbineau F, Bailly C (2008) Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signalling pathway. J Exptl Bot 59:2241–2251

    Google Scholar 

  • Oracz K, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol 150:494–505

    PubMed  Google Scholar 

  • Penfield S, Hall A (2009) A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell 21:1722–1732

    PubMed  Google Scholar 

  • Petruzzelli L, Müller K, Hermann K, Leubner-Metzger G (2003a) Distinct expression patterns of ß-1, 3-glucanases and chitinases during the germination of Solanaceous seeds. Seed Sci Res 13:139–153

    Google Scholar 

  • Petruzzelli L, Sturaro M, Mainieri D, Leubner-Metzger G (2003b) Calcium requirement for ethylene-dependent responses involving 1-aminocyclopropane-1-carboxylic acid oxidase in radicle tissues of germinated pea seeds. Plant Cell Environ 26:661–671

    Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29:e45

    PubMed  Google Scholar 

  • Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20:2729–2745

    PubMed  Google Scholar 

  • Piskurewicz U, Tureckova V, Lacombe E, Lopez-Molina L (2009) Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity. EMBO J 28:2259–2271

    PubMed  Google Scholar 

  • Ren C, Kermode AR (1999) Analyses to determine the role of the megagametophyte and other seed tissues in dormancy maintenance of yellow cedar (Chamaecyparis nootkatensis) seeds: morphological, cellular and physiological changes following moist chilling and during germination. J Exptl Bot 50:1403–1419

    Google Scholar 

  • Renew S, Heyno E, Schopfer P, Liszkay A (2005) Sensitive detection and localization of hydroxyl radical production in cucumber roots and Arabidopsis seedlings by spin trapping electron paramagnetic resonance spectroscopy. Plant J 44:342–347

    PubMed  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    PubMed  Google Scholar 

  • Rohde A, Kurup S, Holdsworth M (2000) ABI3 emerges from the seed. Trends Plant Sci 5:418–419

    PubMed  Google Scholar 

  • Rohde A, Prinsen E, De Rycke R, Engler G, Van Montagu M, Boerjan W (2002) PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar. Plant Cell 14:1885–1901

    PubMed  Google Scholar 

  • Rohde A, Ruttink T, Hostyn V, Sterck L, Van Driessche K, Boerjan W (2007) Gene expression during the induction, maintenance, and release of dormancy in apical buds of poplar. J Exptl Bot 58:4047–4060

    Google Scholar 

  • Romanel EA, Schrago CG, Counago RM, Russo CA, Alves-Ferreira M (2009) Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification. PLoS One 4:e5791

    PubMed  Google Scholar 

  • Ruonala R, Rinne PL, Baghour M, Moritz T, Tuominen H, Kangasjarvi J (2006) Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Plant J 46:628–640

    PubMed  Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390

    PubMed  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signaling. Nature 459:1071–1078

    PubMed  Google Scholar 

  • Schallau A, Kakhovskaya I, Tewes A, Czihal A, Tiedemann J, Mohr M, Grosse I, Manteuffel R, Baumlein H (2008) Phylogenetic footprints in fern spore- and seed-specific gene promoters. Plant J 53:414–424

    PubMed  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125:1591–1602

    PubMed  Google Scholar 

  • Shefferson RP (2009) The evolutionary ecology of vegetative dormancy in mature herbaceous perennial plants. J Ecol 97:1000–1009

    Google Scholar 

  • Shiota H, Satoh R, Watabe K, Harada H, Kamada H (1998) C-ABI3, the carrot homologue of the Arabidopsis ABI3, is expressed during both zygotic and somatic embryogenesis and functions in the regulation of embryo-specific ABA- inducible genes. Plant Cell Physiol 39:1184–1193

    PubMed  Google Scholar 

  • Sliwinska E, Bassel GW, Bewley JD (2009) Germination of Arabidopsis thaliana seeds is not completed as a result of elongation of the radicle but of the adjacent transition zone and lower hypocotyl. J Exptl Bot 60:3587–3594

    Google Scholar 

  • Soltis DE, Bell CD, Kim S, Soltis PS (2008) Origin and early evolution of angiosperms. Annals New York Acad Sci 1133:3–25

    Google Scholar 

  • Stephen JR, Dent KC, Finch-Savage WE (2004) Molecular responses of Prunus avium (wild cherry) embryonic axes to temperatures affecting dormancy. New Phytol 161:401–413

    Google Scholar 

  • Suzuki M, McCarty DR (2008) Functional symmetry of the B3 network controlling seed development. Curr Opin Plant Biol 11:548–553

    PubMed  Google Scholar 

  • Teng S, Rognoni S, Bentsink L, Smeekens S (2008) The Arabidopsis GSQ5/DOG1 Cvi allele is induced by the ABA-mediated sugar signalling pathway, and enhances sugar sensitivity by stimulating ABI4 expression. Plant J 55:372–381

    PubMed  Google Scholar 

  • Thellung A (1906) Die Gattung Lepidium (L.) R. Br. Eine Monographische Studie. Neue Denkschriften der Schweizerischen Naturforschenden Gesellschaft 41:1–304

    Google Scholar 

  • Tonsor SJ, Alonso-Blanco C, Koornneef M (2005) Gene function beyond a single trait: natural variation, gene effects, and evolutionary ecology in Arabidopsis thaliana. Plant Cell Environ 28:2–20

    Google Scholar 

  • Toorop PE, van Aelst AC, Hilhorst HWM (2000) The second step of the biphasic endosperm cap weakening that mediates tomato (Lycopersicon esculentum) seed germination is under control of ABA. J Exptl Bot 51:1371–1379

    Google Scholar 

  • Udvardi MK, Czechowski T, Scheible W-R (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20:1736–1737

    PubMed  Google Scholar 

  • Utsugi S, Nakamura S, Noda K, Maekawa M (2008) Structural and functional properties of Viviparous1 genes in dormant wheat. Genes Genet Syst 83:153–166

    PubMed  Google Scholar 

  • Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci USA 106:3853–3858

    PubMed  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frey NFd, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    PubMed  Google Scholar 

  • Wharton MJ (1955) The use of tetrazolium salts to for determining the viability of seeds of the genus Brassica. Proc Int Seed Test Assoc 20:81–88

    Google Scholar 

  • Wilkinson M, Lenton JR, Holdsworth M (2005) Transcripts of Vp-1 homoeologues are alternatively spliced within the Triticeae tribe. Euphytica 143:243–246

    Google Scholar 

  • Yang Y, Ma YZ, Xu ZS, Chen XM, He ZH, Yu Z, Wilkinson M, Jones HD, Shewry PR, Xia LQ (2007) Isolation and characterization of Viviparous-1 genes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. J Exptl Bot 58:2863–2871

    Google Scholar 

  • Yoshida K, Igarashi E, Wakatsuki E, Miyamoto K, Hirata K (2004) Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii. Plant Sci 167:1335–1341

    Google Scholar 

  • Zeng Y, Kermode AR (2004) A gymnosperm ABI3 gene functions in a severe abscisic acid-insensitive mutant of Arabidopsis (abi3–6) to restore the wild-type phenotype and demonstrates a strong synergistic effect with sugar in the inhibition of post-germinative growth. Plant Mol Biol 56:731–746

    PubMed  Google Scholar 

  • Zeng Y, Raimondi N, Kermode AR (2003) Role of an ABI3 homologue in dormancy maintenance of yellow-cedar seeds and in the activation of storage protein and Em gene promoters. Plant Mol Biol 51:39–49

    PubMed  Google Scholar 

  • Zhang X, Garreton V, Chua N-H (2005) The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 19:1532–1543

    PubMed  Google Scholar 

  • Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1047–1064

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Anja Liszkay (CEA, CNRS, Gif-sur-Yvette cedex, France) for the ROS collaboration and Lydia Buller (University Freiburg, Germany) for expert technical help. Our work is funded by grants of the Deutsche Forschungsgemeinschaft (grant no. DFG LE720/6 and LE720/7) and the Deutscher Akademischer Austauschdienst (grant no. DAAD D/0628197) to G.L.-M., the Wissenschaftliche Gesellschaft Freiburg to G.L.-M. and A.L.. Seeds of several Lepidium accessions were provided by Klaus Mummenhoff (University Osnabrück, Germany) and John Bowman (School of Biological Sciences, Monash University, Victoria, Australia) which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Leubner-Metzger.

Additional information

Web: ‘The Seed Biology Place’: www.seedbiology.de

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graeber, K., Linkies, A., Müller, K. et al. Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. Plant Mol Biol 73, 67–87 (2010). https://doi.org/10.1007/s11103-009-9583-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9583-x

Keywords

Navigation