Skip to main content
Log in

Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeis guineensis: evidence for conserved gene functions in early development

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

With the aim of understanding the molecular mechanisms underlying somatic embryogenesis (SE) in oil palm, we examined transcriptome changes that occur when embryogenic suspension cells are initiated to develop somatic embryos. Two reciprocal suppression subtractive hybridization (SSH) libraries were constructed from oil palm embryogenic cell suspensions: one in which embryo development was blocked by the presence of the synthetic auxin analogue 2,4-dichlorophenoxyacetic acid (2,4-d) in the medium (proliferation library); and another in which cells were stimulated to form embryos by the removal of 2,4-d from the medium (initiation library). A total of 1867 Expressed Sequence Tags (ESTs) consisting of 1567 potential unigenes were assembled from the two libraries. Functional annotation indicated that 928 of the ESTs correspond to proteins that have either no similarity to sequences in public databases or are of unknown function. Gene Ontology (GO) terms assigned to the two EST populations give clues to the underlying molecular functions, biological processes and cellular components involved in the initiation of embryo development. Macroarrays were used for transcript profiling the ESTs during SE. Hierarchical cluster analysis of differential transcript accumulation revealed 4 distinct profiles containing a total of 192 statistically significant developmentally regulated transcripts. Similarities and differences between the global results obtained with in vitro systems from dicots, monocots and gymnosperms will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2,4-d :

2,4-Dichlorophenoxyacetic acid

ARF:

ADP-ribosylation factor

EST:

Expressed sequence tag

GO:

Gene Ontology

GST:

Glutathione S-transferases

HCA:

Hierarchical cluster analysis

PR:

Pathogenesis-related

STM-like:

Shootmeristemless-like

SEm:

Somatic embryo

SE:

Somatic embryogenesis

SSH:

Suppression subtractive hybridization

References

  • Abel S, Oeller PW, Theologis A (1994) Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci USA 91:326–330. doi:10.1073/pnas.91.1.326

    Article  PubMed  CAS  Google Scholar 

  • Aberlenc-Bertossi F, Noirot M, Duval Y (1999) BA enhances the germination of oil palm somatic embryos derived from embryogenic suspension cultures. Plant Cell Tissue Organ Cult 56:53–57. doi:10.1023/A:1006241215717

    Article  CAS  Google Scholar 

  • Alba R, Fei Z, Payton P, Liu Y, Moore SL, Debbie P, Cohn J, D’Ascenzo M, Gordon JS, Rose JK, Martin G, Tanksley SD, Bouzayen M, Jahn MM, Giovannoni J (2004) ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. Plant J 39:697–714. doi:10.1111/j.1365-313X.2004.02178.x

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson SA, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian KD, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Dusterhoft A, Moores T, Jones JD, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes HW, Klosterman S, Schueller C, Chalwatzis N (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488. doi:10.1038/35140

    Article  PubMed  CAS  Google Scholar 

  • Buffard-Morel J, Verdeil JL, Pannetier C (1992) Embryogenèse somatique du cocotier (Cocos nucifera L.) à partir de tissus foliaires: étude histologique. Can J Bot 70:735–741

    Google Scholar 

  • Cairney J, Pullman GS (2007) The cellular and molecular biology of conifer embryogenesis. New Phytol 176:511–536. doi:10.1111/j.1469-8137.2007.02239.x

    Article  PubMed  CAS  Google Scholar 

  • Cairney J, Zheng L, Cowels A, Hsiao J, Zismann V, Liu J, Ouyang S, Thibaud-Nissen F, Hamilton J, Childs K, Pullman GS, Zhang Y, Oh T, Buell CR (2006) Expressed sequence tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis. Plant Mol Biol 62:485–501. doi:10.1007/s11103-006-9035-9

    Article  PubMed  Google Scholar 

  • Chatthai M, Kaukinen KH, Tranbarger TJ, Gupta PK, Misra S (1997) The isolation of a novel metallothionein-related cDNA expressed in somatic and zygotic embryos of Douglas-fir: regulation by ABA, osmoticum, and metal ions. Plant Mol Biol 34:243–254. doi:10.1023/A:1005839832096

    Article  PubMed  CAS  Google Scholar 

  • Che P, Love TM, Frame BR, Wang K, Carriquiry AL, Howell SH (2006) Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol Biol 62:1–14. doi:10.1007/s11103-006-9013-2

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Wu HM, Cheung AY (2002) The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14:2175–2190. doi:10.1105/tpc.003038

    Article  PubMed  CAS  Google Scholar 

  • Clay NK, Nelson T (2005) Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport. Plant Physiol 138:767–777. doi:10.1104/pp.104.055756

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182. doi:10.1146/annurev.arplant.53.100301.135154

    Article  PubMed  CAS  Google Scholar 

  • Consortium GO (2008) The Gene Ontology project in 2008. Nucleic Acids Res 36:D440–D444. doi:10.1093/nar/gkm883

    Article  Google Scholar 

  • Cordewener J, Booij H, Zandt H, Engelen F, Kammen A, Vries S (1991) Tunicamycin-inhibited carrot somatic embryogenesis can be restored by secreted cationic peroxidase isoenzymes. Planta 184:478–486. doi:10.1007/BF00197895

    Article  CAS  Google Scholar 

  • Corley RHV, Tinker PB (2003) The oil palm, 4th edn. Blackwell Science, Oxford

    Google Scholar 

  • de Touchet B, Duval Y, Pannetier C (1991) Plant regeneration from embryogenic suspension culture of oil palm (Elaeis guineensis Jacq). Plant Cell Rep 10:529–532

    Article  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030. doi:10.1073/pnas.93.12.6025

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:reviews3004.1–3004.10

    Google Scholar 

  • Dong JZ, Dunstan DI (1996) Expression of abundant mRNAs during somatic embryogenesis of white spruce [Picea glauca (Moench) Voss]. Planta 199:459–466. doi:10.1007/BF00195740

    Article  PubMed  CAS  Google Scholar 

  • Duval Y, Engelmann F, Durand-Gasselin T (1995) Somatic embryogenesis in oil palm (Elaeis guineensis Jacq.). Springer, Berlin

    Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228. doi:10.1023/A:1024033216561

    Article  CAS  Google Scholar 

  • Freeman WM, Robertson DJ, Vrana KE (2000) Fundamentals of DNA hybridization arrays for gene expression analysis. Biotechniques 29:1042–1046, 1048–1055

    Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47. doi:10.1023/B:GROW.0000038275.29262.fb

    Article  CAS  Google Scholar 

  • Galland R, Randoux B, Vasseur J, Hilbert J (2001) A glutathione S-transferase cDNA identified by mRNA differential display is upregulated during somatic embryogenesis in Cichorium. Biochim Biophys Acta 1522:212–216

    PubMed  CAS  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230. doi:10.1016/S0092-8674(03)00003-5

    Article  PubMed  CAS  Google Scholar 

  • Gray DJ (2005) Propagation from nonmeristematic tissues: nonzygotic embryogenesis. CRC Press Inc., Boca Raton

    Google Scholar 

  • Groth D, Lehrach H, Hennig S (2004) GOblet: a platform for Gene Ontology annotation of anonymous sequence data. Nucleic Acids Res 32:313–317. doi:10.1093/nar/gkh406

    Article  Google Scholar 

  • Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706. doi:10.1104/pp.108.115782

    Article  PubMed  CAS  Google Scholar 

  • Helleboid S, Chapman A, Hendriks T, Inze D, Vasseur J, Hilbert JL (2000a) Cloning of ß-1, 3-glucanases expressed during Cichorium somatic embryogenesis. Plant Mol Biol 42:377–386. doi:10.1023/A:1006344024877

    Article  PubMed  CAS  Google Scholar 

  • Helleboid S, Hendriks T, Bauw G, Inze D, Vasseur J, Hilbert JL (2000b) Three major somatic embryogenesis related proteins in Cichorium identified as PR proteins. J Exp Bot 51:1189–1200. doi:10.1093/jexbot/51.348.1189

    Article  PubMed  CAS  Google Scholar 

  • Ho CL, Kwan YY, Choi MC, Tee SS, Ng WH, Lim KA, Lee YP, Ooi SE, Lee WW, Tee JM, Tan SH, Kulaveerasingam H, Alwee SS, Abdullah MO (2007) Analysis and functional annotation of expressed sequence tags (ESTs) from multiple tissues of oil palm (Elaeis guineensis Jacq.). BMC Genomics 8:381. doi:10.1186/1471-2164-8-381

    Article  PubMed  Google Scholar 

  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114. doi:10.1046/j.1365-313X.2003.01702.x

    Article  PubMed  CAS  Google Scholar 

  • Imin N, Nizamidin M, Daniher D, Nolan KE, Rose RJ, Rolfe BG (2005) Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. Plant Physiol 137:1250–1260. doi:10.1104/pp.104.055277

    Article  PubMed  CAS  Google Scholar 

  • Joosen R, Cordewener J, Supena ED, Vorst O, Lammers M, Maliepaard C, Zeilmaker T, Miki B, America T, Custers J, Boutilier K (2007) Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore-derived embryo development. Plant Physiol 144:155–172. doi:10.1104/pp.107.098723

    Article  PubMed  CAS  Google Scholar 

  • Jouannic S, Argout X, Lechauve F, Fizames C, Borgel A, Morcillo F, Aberlenc-Bertossi F, Duval Y, Tregear J (2005) Analysis of expressed sequence tags from oil palm (Elaeis guineensis). FEBS Lett 579:2709–2714. doi:10.1016/j.febslet.2005.03.093

    Article  PubMed  CAS  Google Scholar 

  • Legrand S, Hendriks T, Hilbert JL, Quillet MC (2007) Characterization of expressed sequence tags obtained by SSH during somatic embryogenesis in Cichorium intybus L. BMC Plant Biol 7:27. doi:10.1186/1471-2229-7-27

    Article  PubMed  Google Scholar 

  • Lippert D, Zhuang J, Ralph S, Ellis DE, Gilbert M, Olafson R, Ritland K, Ellis B, Douglas CJ, Bohlmann J (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5:461–473. doi:10.1002/pmic.200400986

    Article  PubMed  CAS  Google Scholar 

  • Low ET, Alias H, Boon SH, Shariff EM, Tan CY, Ooi LC, Cheah SC, Raha AR, Wan KL, Singh R (2008) Oil palm (Elaeis guineensis Jacq.) tissue culture ESTs: identifying genes associated with callogenesis and embryogenesis. BMC Plant Biol 8:62. doi:10.1186/1471-2229-8-62

    Article  PubMed  Google Scholar 

  • Malik MR, Wang F, Dirpaul JM, Zhou N, Polowick PL, Ferrie AM, Krochko JE (2007) Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiol 144:134–154. doi:10.1104/pp.106.092932

    Article  PubMed  CAS  Google Scholar 

  • Malinowski R, Filipecki M (2002) The role of cell wall in plant embryogenesis. Cell Mol Biol Lett 7:1137–1151

    PubMed  CAS  Google Scholar 

  • Overvoorde PJ, Okushima Y, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Liu A, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell 17:3282–3300. doi:10.1105/tpc.105.036723

    Article  PubMed  CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Feher A (2002) The Role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819. doi:10.1104/pp.000810

    Article  PubMed  CAS  Google Scholar 

  • Schrick K, Mayer U, Martin G, Bellini C, Kuhnt C, Schmidt J, Jurgens G (2002) Interactions between sterol biosynthesis genes in embryonic development of Arabidopsis. Plant J 31:61–73. doi:10.1046/j.1365-313X.2002.01333.x

    Article  PubMed  CAS  Google Scholar 

  • Seo PJ, Lee AK, Xiang F, Park CM (2008) Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. Plant Cell Physiol 49:334–344. doi:10.1093/pcp/pcn011

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, Millam S, Hedley PE, McNicol J, Bryan GJ (2008) Molecular regulation of somatic embryogenesis in potato: an auxin led perspective. Plant Mol Biol, 16 Jun 2008. Epub ahead of print

  • Singla B, Tyagi AK, Khurana JP, Khurana P (2007) Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat (Triticum aestivum) and their possible interactions. Plant Mol Biol 65:677–692. doi:10.1007/s11103-007-9234-z

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, van Zyl L, Egertsdotter U, Craig D, Liu W, Sederoff RR (2003) The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos. Plant Physiol 131:49–60. doi:10.1104/pp.015214

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, Bozhkov PV, Chu TM, Van Zyl L, Egertsdotter U, Suarez MF, Craig D, Wolfinger RD, Von Arnold S, Sederoff RR (2004) Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiol 24:1073–1085

    PubMed  CAS  Google Scholar 

  • Su N, He K, Jiao Y, Chen C, Zhou J, Li L, Bai S, Li X, Deng XW (2007) Distinct reorganization of the genome transcription associates with organogenesis of somatic embryo, shoots, and roots in rice. Plant Mol Biol 63:337–349. doi:10.1007/s11103-006-9092-0

    Article  PubMed  CAS  Google Scholar 

  • Takeda H, Kotake T, Nakagawa N, Sakurai N, Nevins DJ (2003) Expression and function of cell wall-bound cationic peroxidase in asparagus somatic embryogenesis. Plant Physiol 131:1765–1774. doi:10.1104/pp.102.014654

    Article  PubMed  CAS  Google Scholar 

  • Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136. doi:10.1104/pp.103.019968

    Article  PubMed  CAS  Google Scholar 

  • Thomann A, Dieterle M, Genschik P (2005a) Plant CULLIN-based E3s: phytohormones come first. FEBS Lett 579:3239–3245. doi:10.1016/j.febslet.2005.02.068

    Article  PubMed  CAS  Google Scholar 

  • Thomann A, Brukhin V, Dieterle M, Gheyeselinck J, Vantard M, Grossniklaus U, Genschik P (2005b) Arabidopsis CUL3A and CUL3B genes are essential for normal embryogenesis. Plant J 43:437–448. doi:10.1111/j.1365-313X.2005.02467.x

    Article  PubMed  CAS  Google Scholar 

  • Tregear JW, Morcillo F, Richaud F, Berger A, Singh R, Cheah SC, Hartmann C, Rival A, Duval Y (2002) Characterization of a defensin gene expressed in oil palm inflorescences: induction during tissue culture and possible association with epigenetic somaclonal variation events. J Exp Bot 53:1387–1396. doi:10.1093/jexbot/53.373.1387

    Article  PubMed  CAS  Google Scholar 

  • Tsuwamoto R, Fukuoka H, Takahata Y (2007) Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. Planta 225:641–652. doi:10.1007/s00425-006-0388-8

    Article  PubMed  CAS  Google Scholar 

  • van Zyl L, Bozhkov PV, Clapham DH, Sederoff RR, von Arnold S (2003) Up, down and up again is a signature global gene expression pattern at the beginning of gymnosperm embryogenesis. Gene Expr Patterns 3:83–91. doi:10.1016/S1567-133X(02)00068-6

    Article  PubMed  Google Scholar 

  • Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252. doi:10.1016/j.tplants.2007.04.002

    Article  PubMed  CAS  Google Scholar 

  • Vidali L, Augustine RC, Kleinman KP, Bezanilla M (2007) Profilin is essential for tip growth in the moss Physcomitrella patens. Plant Cell 19:3705–3722. doi:10.1105/tpc.107.053413

    Article  PubMed  CAS  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249. doi:10.1023/A:1015673200621

    Article  Google Scholar 

  • Vrinten PL, Nakamura T, Kasha KJ (1999) Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barley (Hordeum vulgare) L. Plant Mol Biol 41:455–463. doi:10.1023/A:1006383724443

    Article  PubMed  CAS  Google Scholar 

  • Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B (2003) Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15:612–625. doi:10.1105/tpc.008433

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Scheres B (2005) Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell 17:525–536. doi:10.1105/tpc.104.028449

    Article  PubMed  CAS  Google Scholar 

  • Zeng F, Zhang X, Zhu L, Tu L, Guo X, Nie Y (2006) Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol 60:167–183. doi:10.1007/s11103-005-3381-x

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Burk DH, Nairn CJ, Wood-Jones A, Morrison WHIII, Ye ZH (2005) Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization. Plant Cell 17:1449–1466. doi:10.1105/tpc.105.031377

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Xavier Sabau for the expertise in cDNA arraying at the Robotics and DNA Sequencing Platform CIRAD, Montpellier Languedoc-Roussillon Genopole (http://www.genopole-montpellier-lr.org), Thierry Beule for helpful technical advice on macroarray methodology, and Ivanna Fuentes for excellent technical assistance with handling the PCR amplification of the EST plasmid inserts. This work was financed by institutional funds from IRD and CIRAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy John Tranbarger.

Additional information

Hsiang-Chun Lin and Fabienne Morcillo contributed equally to this work and a portion was originally presented at the 2006 Congress of the Federation of European Societies of Plant Biology Lyon, France.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, HC., Morcillo, F., Dussert, S. et al. Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeis guineensis: evidence for conserved gene functions in early development. Plant Mol Biol 70, 173–192 (2009). https://doi.org/10.1007/s11103-009-9464-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9464-3

Keywords

Navigation