Skip to main content
Log in

An in silico strategy identified the target gene candidates regulated by dehydration responsive element binding proteins (DREBs) in Arabidopsis genome

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Identification of downstream target genes of stress-relating transcription factors (TFs) is desirable in understanding cellular responses to various environmental stimuli. However, this has long been a difficult work for both experimental and computational practices. In this research, we presented a novel computational strategy which combined the analysis of the transcription factor binding site (TFBS) contexts and machine learning approach. Using this strategy, we conducted a genome-wide investigation into novel direct target genes of dehydration responsive element binding proteins (DREBs), the members of AP2-EREBPs transcription factor super family which is reported to be responsive to various abiotic stresses in Arabidopsis. The genome-wide searching yielded in total 474 target gene candidates. With reference to the microarray data for abiotic stresses-inducible gene expression profile, 268 target gene candidates out of the total 474 genes predicted, were induced during the 24-h exposure to abiotic stresses. This takes about 57% of total predicted targets. Furthermore, GO annotations revealed that these target genes are likely involved in protein amino acid phosphorylation, protein binding and Endomembrane sorting system. The results suggested that the predicted target gene candidates were adequate to meet the essential biological principle of stress-resistance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TFs:

Transcription factors

TFBS:

Transcription factor binding site

DBD:

DNA binding domain

DREBs:

Dehydration responsive element binding proteins

DFSs:

DRE frame sequences

nDFSs:

Non-DRE frame sequences

MGs:

Master genes

SVM:

Support vector machine

References

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274. doi:10.1007/s00299-006-0204-8

    Article  PubMed  CAS  Google Scholar 

  • Agarwal P, Agarwal PK, Nair S, Sopory SK, Reddy MK (2007) Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Mol Genet Genomics 277:189–198. doi:10.1007/s00438-006-0183-z

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29. doi:10.1038/75556

    Article  PubMed  CAS  Google Scholar 

  • Baten A, Chang B, Halgamuge S, Li J (2006) Splice site identification using probabilistic parameters and SVM classification. BMC Bioinformatics 7(Suppl 5):S15. doi:10.1186/1471-2105-7-S5-S15

    Article  PubMed  CAS  Google Scholar 

  • Bigelow HR, Wenick AS, Wong A, Hobert O (2004) CisOrtho: a program pipeline for genome-wide identification of transcription factor target genes using phylogenetic footprinting. BMC Bioinformatics 5:27. doi:10.1186/1471-2105-5-27

    Article  PubMed  Google Scholar 

  • Boudsocq M, Droillard MJ, Barbier-Brygoo H, Lauriere C (2007) Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol 63:491–503. doi:10.1007/s11103-006-9103-1

    Article  PubMed  CAS  Google Scholar 

  • Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G (2004) GO: TermFinder—open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20:3710–3715. doi:10.1093/bioinformatics/bth456

    Article  PubMed  CAS  Google Scholar 

  • Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM (2003) A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132:1020–1032. doi:10.1104/pp.102.017814

    Article  PubMed  CAS  Google Scholar 

  • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167. doi:10.1023/A:1009715923555

    Article  Google Scholar 

  • Chae MJ, Lee JS, Nam MH, Cho K, Hong JY, Yi SA, Suh SC, Yoon IS (2007) A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Mol Biol 63:151–169. doi:10.1007/s11103-006-9079-x

    Article  PubMed  CAS  Google Scholar 

  • Chan BY, Kibler D (2005) Using hexamers to predict cis-regulatory motifs in Drosophila. BMC Bioinformatics 6:262. doi:10.1186/1471-2105-6-262

    Article  PubMed  CAS  Google Scholar 

  • Chen JQ, Dong Y, Wang YJ, Liu Q, Zhang JS, Chen SY (2003) An AP2/EREBP-type transcription-factor gene from rice is cold-inducible and encodes a nuclear-localized protein. Theor Appl Genet 107:972–979. doi:10.1007/s00122-003-1346-5

    Article  PubMed  CAS  Google Scholar 

  • Chitteti BR, Peng Z (2007) Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res 6:1718–1727

    Article  PubMed  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190. doi:10.1101/gr.849004

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo C, Weinl S, Batistic O, Pandey GK, Cheong YH, Schultke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J (2006) Alternative complex formation of the Ca-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J 48:857–872. doi:10.1111/j.1365-313X.2006.02921.x

    Article  PubMed  CAS  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751. doi:10.1104/pp.106.094532

    Article  PubMed  CAS  Google Scholar 

  • Dieterich C, Herwig R, Vingron M (2003) Exploring potential target genes of signaling pathways by predicting conserved transcription factor binding sites. Bioinformatics 19(Suppl 2):II50–II56. doi:10.1093/bioinformatics/btg1059

    Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690. doi:10.1105/tpc.003483

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    Article  PubMed  CAS  Google Scholar 

  • Gertz J, Fay JC, Cohen BA (2006) Phylogeny based discovery of regulatory elements. BMC Bioinformatics 7:266. doi:10.1186/1471-2105-7-266

    Article  PubMed  CAS  Google Scholar 

  • GuhaThakurta D, Stormo GD (2001) Identifying target sites for cooperatively binding factors. Bioinformatics 17:608–621. doi:10.1093/bioinformatics/17.7.608

    Article  PubMed  CAS  Google Scholar 

  • Hao D, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem 273:26857–26861. doi:10.1074/jbc.273.41.26857

    Article  PubMed  CAS  Google Scholar 

  • Holstege FC, Clevers H (2006) Transcription factor target practice. Cell 124:21–23. doi:10.1016/j.cell.2005.12.026

    Article  PubMed  CAS  Google Scholar 

  • Horsman S, Moorhouse MJ, de Jager VC, van der Spek P, Grosveld F, Strouboulis J, Katsantoni EZ (2006) TF Target Mapper: a BLAST search tool for the identification of transcription factor target genes. BMC Bioinformatics 7:120. doi:10.1186/1471-2105-7-120

    Article  PubMed  CAS  Google Scholar 

  • Huang WL, Tung CW, Huang HL, Hwang SF, Ho SY (2007) ProLoc: prediction of protein subnuclear localization using SVM with automatic selection from physicochemical composition features. Biosystems 90:573–581

    Google Scholar 

  • Japkowicz N (2000) The class imbalance problem: significance and strategies. Proceedings of the 2000 International Conference on Artificial Intelligence, pp 111–117

  • Jolly ER, Chin CS, Herskowitz I, Li H (2005) Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis. BMC Bioinformatics 6:275. doi:10.1186/1471-2105-6-275

    Article  PubMed  CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722. doi:10.1093/pcp/pch083

    Article  PubMed  CAS  Google Scholar 

  • Kel AE, Kel-Margoulis OV, Farnham PJ, Bartley SM, Wingender E, Zhang MQ (2001) Computer-assisted identification of cell cycle-related genes: new targets for E2F transcription factors. J Mol Biol 309:99–120. doi:10.1006/jmbi.2001.4650

    Article  PubMed  CAS  Google Scholar 

  • Khan M, Takasaki H, Komatsu S (2005) Comprehensive phosphoproteome analysis in rice and identification of phosphoproteins responsive to different hormones/stresses. J Proteome Res 4:1592–1599. doi:10.1021/pr0501160

    Article  PubMed  CAS  Google Scholar 

  • Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Eklof S, Till S, Bogre L, Hirt H, Meskiene I (2000) SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell 12:2247–2258

    Article  PubMed  CAS  Google Scholar 

  • Krivan W, Wasserman WW (2001) A predictive model for regulatory sequences directing liver-specific transcription. Genome Res 11:1559–1566. doi:10.1101/gr.180601

    Article  PubMed  CAS  Google Scholar 

  • Li XP, Tian AG, Luo GZ, Gong ZZ, Zhang JS, Chen SY (2005) Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet 110:1355–1362. doi:10.1007/s00122-004-1867-6

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993. doi:10.1111/j.1365-313X.2004.02100.x

    Article  PubMed  CAS  Google Scholar 

  • Matsushima R, Hayashi Y, Kondo M, Shimada T, Nishimura M, Hara-Nishimura I (2002) An endoplasmic reticulum-derived structure that is induced under stress conditions in Arabidopsis. Plant Physiol 130:1807–1814. doi:10.1104/pp.009464

    Article  PubMed  CAS  Google Scholar 

  • Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S, Lewicki-Potapov B, Michael H, Munch R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S, Wingender E (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31:374–378. doi:10.1093/nar/gkg108

    Article  PubMed  CAS  Google Scholar 

  • Ogul H, Mumcuoglu EU (2006) SVM-based detection of distant protein structural relationships using pairwise probabilistic suffix trees. Comput Biol Chem 30:292–299. doi:10.1016/j.compbiolchem.2006.05.001

    Article  PubMed  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    Article  PubMed  CAS  Google Scholar 

  • Pabo CO, Sauer RT (1992) Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 61:1053–1095. doi:10.1146/annurev.bi.61.070192.005201

    Article  PubMed  CAS  Google Scholar 

  • Phan J, Moffitt R, Dale J, Petros J, Young A, Wang M (2005) Improvement of SVM algorithm for microarray analysis using intelligent parameter selection. Conf Proc IEEE Eng Med Biol Soc 5:4838–4841

    PubMed  Google Scholar 

  • Prak S, Hem S, Boudet J, Viennois G, Sommerer N, Rossignol M, Maurel C, Santoni V (2008) Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins. Role in sub-cellular trafficking of AtPIP2;1 in response to salt stress. Mol Cell Proteomics 7:1019–1030. doi:10.1074/mcp.M700566-MCP200

    Article  PubMed  CAS  Google Scholar 

  • Qian J, Lin J, Luscombe NM, Yu H, Gerstein M (2003) Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics 19:1917–1926. doi:10.1093/bioinformatics/btg347

    Article  PubMed  CAS  Google Scholar 

  • Qian J, Esumi N, Chen Y, Wang Q, Chowers I, Zack DJ (2005) Identification of regulatory targets of tissue-specific transcription factors: application to retina-specific gene regulation. Nucleic Acids Res 33:3479–3491. doi:10.1093/nar/gki658

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz M, Reeves NL, Posakony JW (2002) SCORE: a computational approach to the identification of cis-regulatory modules and target genes in whole-genome sequence data Site clustering over random expectation. Proc Natl Acad Sci USA 99:9888–9893. doi:10.1073/pnas.152320899

    Article  PubMed  CAS  Google Scholar 

  • Redestig H, Weicht D, Selbig J, Hannah MA (2007) Transcription factor target prediction using multiple short expression time series from Arabidopsis thaliana. BMC Bioinformatics 8:454. doi:10.1186/1471-2105-8-454

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110. doi:10.1126/science.290.5499.2105

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309. doi:10.1105/tpc.105.035881

    Article  PubMed  CAS  Google Scholar 

  • Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32:D91–D94. doi:10.1093/nar/gkh012

    Article  PubMed  CAS  Google Scholar 

  • Schölkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge, MA

  • Schölkopf B, Burges CJC, Smola AJ (1999) Advances in kernel methods: support vector learning. MIT Press, Cambridge, MA

  • Schweighofer A, Meskiene I (2008) Regulation of stress hormones jasmonates and ethylene by MAPK pathways in plants. Mol Biosyst 4:799–803. doi:10.1039/b718578m

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292. doi:10.1046/j.1365-313X.2002.01359.x

    Article  PubMed  CAS  Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396. doi:10.1105/tpc.105.033043

    Article  PubMed  CAS  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426. doi:10.1046/j.0960-7412.2001.01227.x

    Article  PubMed  CAS  Google Scholar 

  • Towsey MW, Gordon JJ, Hogan JM (2006) The prediction of bacterial transcription start sites using SVMs. Int J Neural Syst 16:363–370. doi:10.1142/S0129065706000767

    Article  PubMed  Google Scholar 

  • Vapnik V (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  • Vavouri T, Elgar G (2005) Prediction of cis-regulatory elements using binding site matrices—the successes, the failures and the reasons for both. Curr Opin Genet Dev 15:395–402. doi:10.1016/j.gde.2005.05.002

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Yang FP, Chen XQ, Liang RQ, Zhang LQ, Geng DM, Zhang XD, Song YZ, Zhang GS (2006) Induced expression of DREB transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat. Yi Chuan Xue Bao 33:468–476

    PubMed  CAS  Google Scholar 

  • Wang M, Zhang Y, Wang J, Wu X, Guo X (2007) A novel MAP kinase gene in cotton (Gossypium hirsutum L.), GhMAPK, is involved in response to diverse environmental stresses. J Biochem Mol Biol 40:325–332

    PubMed  CAS  Google Scholar 

  • Wasserman WW, Fickett JW (1998) Identification of regulatory regions which confer muscle-specific gene expression. J Mol Biol 278:167–181. doi:10.1006/jmbi.1998.1700

    Article  PubMed  CAS  Google Scholar 

  • Wee LJ, Tan TW, Ranganathan S (2006) SVM-based prediction of caspase substrate cleavage sites. BMC Bioinformatics 7(Suppl 5):S14. doi:10.1186/1471-2105-7-S5-S14

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Fei SZ (2006) Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta 224:878–888. doi:10.1007/s00425-006-0273-5

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Lee SH, Kim JS, Wimalasena J, Kitajima S, Baek SJ (2006) Activating transcription factor 3 and early growth response 1 are the novel targets of LY294002 in a phosphatidylinositol 3-kinase-independent pathway. Cancer Res 66:2376–2384. doi:10.1158/0008-5472.CAN-05-1987

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto YY, Ichida H, Matsui M, Obokata J, Sakurai T, Satou M, Seki M, Shinozaki K, Abe T (2007) Identification of plant promoter constituents by analysis of local distribution of short sequences. BMC Genomics 8:67. doi:10.1186/1471-2164-8-67

    Article  PubMed  CAS  Google Scholar 

  • Young RA (2000) Biomedical discovery with DNA arrays. Cell 102:9–15. doi:10.1016/S0092-8674(00)00005-2

    Article  PubMed  CAS  Google Scholar 

  • Yu GX, Ostrouchov G, Geist A, Samatova NF (2003) An SVM-based algorithm for identification of photosynthesis-specific genome features. Proc IEEE Comput Soc Bioinformatics Conf 2:235–243

    Article  Google Scholar 

  • Zhang W, Ruan J, Ho TH, You Y, Yu T, Quatrano RS (2005) Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics 21:3074–3081. doi:10.1093/bioinformatics/bti490

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Grant No. 30470159/C01020304) and the National High-Technology Research and Development Program (“863”Program) of China (Grant No. 2007AA10Z110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyun Hao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Yang, S., Yin, Y. et al. An in silico strategy identified the target gene candidates regulated by dehydration responsive element binding proteins (DREBs) in Arabidopsis genome. Plant Mol Biol 69, 167–178 (2009). https://doi.org/10.1007/s11103-008-9414-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9414-5

Keywords

Navigation