Skip to main content
Log in

Towards engineering increased pantothenate (vitamin B5) levels in plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Pantothenate (vitamin B5) is the precursor of the 4′-phosphopantetheine moiety of coenzyme A and acyl-carrier protein. It is made by plants and microorganisms de novo, but is a dietary requirement for animals. The pantothenate biosynthetic pathway is well-established in bacteria, comprising four enzymic reactions catalysed by ketopantoate hydroxymethyltransferase (KPHMT), l-aspartate-α-decarboxylase (ADC), pantothenate synthetase (PS) and ketopantoate reductase (KPR) encoded by panB, panD, panC and panE genes, respectively. In higher plants, the genes encoding the first (KPHMT) and last (PS) enzymes have been identified and characterised in several plant species. Commercially, pantothenate is chemically synthesised and used in vitamin supplements, feed additives and cosmetics. Biotransformation is an attractive alternative production system that would circumvent the expensive procedures of separating racemic intermediates. We explored the possibility of manipulating pantothenate biosynthesis in plants. Transgenic oilseed rape (Brassica napus) lines were generated in which the E. coli KPHMT and PS genes were expressed under a strong constitutive CaMV35SS promoter. No significant change of pantothenate levels in PS transgenic lines was observed. In contrast plants expressing KPHMT had elevated pantothenate levels in leaves, flowers siliques and seed in the range of 1.5–2.5 fold increase compared to the wild type plant. Seeds contained the highest vitamin content, indicating that they might be the ideal target for production purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

α-KIVA:

α-Ketoisovalerate

AMP:

Adenosine monophosphate

ADC:

l-Aspartate-α-decarboxylase

GUS:

β-Glucuronidase

KPHMT:

Ketopantoate hydroxymethyltransferase

KPR:

Ketopantoate reductase

MUG:

4-Methylumbelliferyl-beta-galactoside

PS:

Pantothenate synthetase

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Chakauya E, Coxon KM, Whitney HM, Ashurst JL, Abell C, Smith AG (2006) Pantothenate biosynthesis in higher plants: advances and challenges. Physiol Plant 126:319–329. doi:10.1111/j.1399-3054.2006.00683.x

    Article  CAS  Google Scholar 

  • Chassagnole C, Diano A, Letisse F, Lindley ND (2003) Metabolic network analysis during fed-batch cultivation of Corynebacterium glutamicum for pantothenic acid production: first quantitative data and analysis of by-product formation. J Biotechnol 104:261–272. doi:10.1016/S0168-1656(03)00146-9

    Article  PubMed  CAS  Google Scholar 

  • Choudhry A, Mandichak TL, Broskey JP, Egolf RW, Kinsland C, Begley TP et al (2003) Inhibitors of pantothenate kinase: novel antibiotics for staphylococcal infections. Antimicrob Agents Chemother 47:2051–2055. doi:10.1128/AAC.47.6.2051-2055.2003

    Article  PubMed  CAS  Google Scholar 

  • Coxon MK, Chakauya E, Ottenhof HH, Whitney HM, Blundell TL, Abell C et al (2005) Pantothenate biosynthesis in higher plants. Biochem Soc Trans 33:743–746. doi:10.1042/BST0330743

    Article  PubMed  CAS  Google Scholar 

  • Cronan JE Jr, Littel KJ, Jackowski S (1982) Genetic and biochemical analyses of pantothenate biosynthesis in Escherichia coli and Salmonella typhimurium. J Bacteriol 149:916–922

    PubMed  CAS  Google Scholar 

  • von Delft F, Lewendon A, Dhanaraj V, Blundell TL, Abell C, Smith AG (2001) The crystal structure of E. coli pantothenate synthetase confirms it as a member of the cytidylyltransferase superfamily. Structure 9:439–450. doi:10.1016/S0969-2126(01)00604-9

    Article  Google Scholar 

  • von Delft F, Inoue T, Saldanha SA, Ottenhof HH, Schmitzberger F, Birch LM et al (2003) Structure of E. coli ketopantoate hydroxymethyl transferase complexed with ketopantoate and Mg2+, solved by locating 160 selenomethionine sites. Structure 11:985–996. doi:10.1016/S0969-2126(03)00158-8

    Article  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21. doi:10.1007/BF02712670

    Article  CAS  Google Scholar 

  • Elborough EM, Simon JW, Swinhoc R, Ashton AR, Slabas AR (1994) Studies on wheat acetyl CoA carboxylase and the cloning of a partial cDNA. Plant Mol Biol 24:21–34. doi:10.1007/BF00040571

    Article  PubMed  CAS  Google Scholar 

  • Fouad WM, Rathinasabapathi B (2006) Expression of bacterial l-aspartate-α-decarboxylase in tobacco increases β-alanine and pantothenate levels and improves thermotolerance. Plant Mol Biol 60:495–505. doi:10.1007/s11103-005-4844-9

    Article  PubMed  CAS  Google Scholar 

  • Genschel U, Powell CA, Abell C, Smith AG (1999) The final step of the pantothenate biosynthesis in higher plants: cloning and characterisation of the Pantothenate synthetase from Lotus japonicus and Oryza sativum (rice). Biochem J 341:669–678. doi:10.1042/0264-6021:3410669

    Article  PubMed  CAS  Google Scholar 

  • Guerineau F, Mullineaux P (1993) Plant transformation and expression vectors. In: Croy RRD (ed) Plant molecular biology, Labfax manual. BIOS Scientific, Oxford, pp 121–148

  • Hellens R, Anne Edwards E, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  PubMed  CAS  Google Scholar 

  • Jackowski S, Alix JH (1990) Cloning, sequence, and expression of the pantothenate permease (panF) gene of Escherichia coli. J Bacteriol 172:3842–3848

    PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions;-glucuronidase as a sensitive and versatile gene. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jonczyk R, Ronconi S, Rychlik M, Genschel U (2008) Pantothenate synthetase is essential but not limiting for pantothenate biosynthesis in Arabidopsis. Plant Mol Biol 66:1–14. doi:10.1007/s11103-007-9248-6

    Article  PubMed  CAS  Google Scholar 

  • Jones CE, Brook JM, Buck D, Abell C, Smith AG (1993) Cloning and sequencing of the Escherichia coli panB gene which encodes ketopantoate hydroxymethyltransferase, and overproduction of the enzyme. J Bacteriol 175:2125–2130

    PubMed  CAS  Google Scholar 

  • Jones EC, Dancer JE, Smith AG, Abell C (1994) Evidence of the pathway to pantothenate in plants. Can J Chem 72:261–263

    CAS  Google Scholar 

  • Kallberg Y, Oppermann U, Jornvall H, Persson B (2002) Short-chain dehydrogenases/reductases (SDRs). Eur J Biochem 269:4409–4417. doi:10.1046/j.1432-1033.2002.03130.x

    Article  PubMed  CAS  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302. doi:10.1126/science.236.4806.1299

    Article  PubMed  CAS  Google Scholar 

  • Kleinkauf H (2000) The role of 4′-phosphopantetheine in the biosynthesis of fatty acids, polyketides and peptides. Biofactors 11:91–92

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214. doi:10.1007/BF02342540

    Article  Google Scholar 

  • Liu B, Wendel JF (2002) Non-Mendelian phenomena in allopolyploid genome evolution. Curr Genomics 3:489–505. doi:10.2174/1389202023350255

    Article  CAS  Google Scholar 

  • Lobley C, Schmitzberger F, Kilkenny ML, Whitney H, Ottenhof HH, Chakauya E et al (2003) Structural insights into the evolution of the pantothenate-biosynthesis pathway. Biochem Soc Trans 31:563–571. doi:10.1042/BST0310563

    Article  PubMed  CAS  Google Scholar 

  • Millar A, Smith MA, Kunst L (2000) All fatty acids are not equal: discrimination in plant membrane lipids. Trends Plant Sci 5:95–101. doi:10.1016/S1360-1385(00)01566-1

    Article  PubMed  CAS  Google Scholar 

  • Miyatake K, Nakano Y, Kitaoka S (1979) Pantothenate synthetase from Escherichia coli. [d-pantoate: beta-alanine ligase (AMP-forming)]. Methods Enzymol 62:215–219. doi: 10.1016/0076-6879(79)62221-8

  • Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238–242. doi:10.1007/BF00778542

    Article  CAS  Google Scholar 

  • Murphy DJ (2006) Molecular breeding strategies for the modification of lipid composition. In Vitro Cell Dev Biol Plant 42:89–99. doi:10.1079/IVP2005734

    CAS  Google Scholar 

  • Ottenhof HH, Ashurst JL, Whitney HM, Saldanha SA, Schmitzberger F, Gweon HS et al (2004) Organisation of the pantothenate (vitamin B5) biosynthesis pathway in higher plants. Plant J 37:61–72. doi:10.1046/j.1365-313X.2003.01940.x

    Article  PubMed  CAS  Google Scholar 

  • Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: l-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:2246–2250. doi:10.1128/AEM.68.5.2246-2250.2002

    Article  PubMed  CAS  Google Scholar 

  • Ramjee MK, Genschel U, Abell C, Smith AG (1997) Escherichia coli l-aspartate-alpha-decarboxylase: preprotein processing and observation of reaction intermediates by electrospray mass spectrometry. Biochem J 323:661–669

    PubMed  CAS  Google Scholar 

  • Rychlik M (2000) Quantification of free and bound pantothenic acid in foods and blood plasma by Stable Isotope Dilution assay. J Agric Food Chem 48:1175–1181. doi:10.1021/jf9913054

    Article  PubMed  CAS  Google Scholar 

  • Sahm H, Eggeling L (1999) d-pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding l-valine synthesis for d-pantothenate overproduction. Appl Environ Microbiol 65:1973–1979

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Savidge B, Weiss JD, Wong Y-HH, Lassner MW, Mitsky TA, Shewmaker CK et al (2002) Isolation, characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 129:321–332. doi:10.1104/pp.010747

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Yamada H (1992) Enzymatic synthesis of chiral intermediates for d-pantothenate synthesis. Opportunities of industrial enzymes. Bernard Wolnak and Associates, Chicago, IL

    Google Scholar 

  • Shimizu S, Kataoka M, Chung MCM, Yamada H (1988) Ketopantoic acid reductase of Pseudomonas maltophilus 845—purification, characterisation, and role in pantothenate biosynthesis. J Biol Chem 263:12077–12084

    PubMed  CAS  Google Scholar 

  • Singh DP, Cornah JE, Hadingham S, Smith AG (2002) Expression analysis of the two ferrochelatase genes in Arabidopsis in different tissues and under stress conditions reveals their different roles in haem biosynthesis. Plant Mol Biol 50:773–788. doi:10.1023/A:1019959224271

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1995) The dynamic nature of polyploid genomes. Proc Natl Acad Sci USA 92:8089–8091. doi:10.1073/pnas.92.18.8089

    Article  PubMed  CAS  Google Scholar 

  • Sweetman JP, Chu C, Qu N, Greenland AJ, Sonnewald U, Jepson I (2002) Ethanol vapor is an efficient inducer of the alc gene expression system in model and crop plant species. Plant Physiol 129:943–948. doi:10.1104/pp.010937 American Society of Plant Biologists

    Article  PubMed  CAS  Google Scholar 

  • Teller JH, Powers SG, Snell EE (1976) Ketopantoate hydroxymethyltransferase. Part 1. Purification and role in pantothenate biosynthesis. J Biol Chem 251:3780–3785

    PubMed  CAS  Google Scholar 

  • USDA (2008) National nutrient database for standard Reference, Release 18. (http://www.nal.usda.gov/fnic/foodcomp/Data/SR18/nutrlist/sr18a410.pdf). Last Accessed 14 January 2008

  • Vadamme EJ (1992) Production of vitamins, coenzymes, and related biochemicals by biotechnological processes. J Chem Technol Biotechnol 53:313–327

    Google Scholar 

  • Vorwoerd TC, Dekker BMM, Hoekemma A (1989) A small scale procedure for rapid isolation of plant RNAs. Nucleic Acids Res 17:2362–2362. doi:10.1093/nar/17.6.2362

    Article  Google Scholar 

  • Walsh TA, Green SB, Larrinua IM, Schmitzer PR (2001) Characterisation of plant beta-ureidopropionase and functional overexpression in Escherichia coli. Plant Physiol 125:1001–1011. doi:10.1104/pp.125.2.1001

    Article  PubMed  CAS  Google Scholar 

  • White WH, Gunyuzlu PL, Toyn JH (2001) Saccharomyces cerevisiae is capable of de novo pantothenic acid biosynthesis involving a novel pathway of beta-alanine production from spermine. J Biol Chem 276:10794–10800. doi:10.1074/jbc.M009804200

    Article  PubMed  CAS  Google Scholar 

  • Wyse BW, Song WO, Walsh JH, Hansen RG (1985) Pantothenic acid. In: August J, Klein BP, Becker D, Venugopal PB (eds) Methods in vitamin assay. Wiley-Interscience Publication, New York, pp 399–416

    Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P et al (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305. doi:10.1126/science.287.5451.303

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Frank MW, Virga KG, Lee E, Rock CO, Jackowski S (2004) Acyl carrier protein is a cellular target for the antibacterial action of the pantothenamide class of pantothenate antimetabolites. J Biol Chem 279:50969–50975. doi:10.1074/jbc.M409607200

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632. doi:10.1104/pp.104.046367

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for funding from the UK Biotechnology and Biological Sciences Research Council (BBSRC) and EU FPV (HPRN-CT-2002-00244). E.C. was in receipt of a studentship from the Cambridge Commonwealth Trust through Sidney Sussex College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ereck Chakauya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakauya, E., Coxon, K.M., Wei, M. et al. Towards engineering increased pantothenate (vitamin B5) levels in plants. Plant Mol Biol 68, 493–503 (2008). https://doi.org/10.1007/s11103-008-9386-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9386-5

Keywords

Navigation