Skip to main content
Log in

Tumor targeting of humanized fragment antibody secreted from transgenic rice cell suspension culture

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The tumor-associated glycoprotein 72 (TAG 72) has been shown to be expressed in the majority of human adenocarcinomas. In an effort to develop a technique for the safe and inexpensive production of large quantities of anti-TAG 72 humanized antibody fragments (hzAb) as a future source of clinical-grade proteins, we developed a transgenic rice cell suspension culture system. The in vivo assembly and secretion of hzAb were achieved in a transgenic rice cell culture under the control of the rice alpha amylase 3D (RAmy 3D) expression system, and the biological activities of plant-derived hzAb were determined to be quite similar to those of animal-derived antibody. Purified hzAb was shown to bind to the recombinant antigen, TAG 72, and to bind specifically to human LS 174T colon adenocarcinoma cells expressing the TAG 72 antigen, and this binding occurred to the same extent as was seen with animal-derived antibody. Plant-derived hzAb proved as effective as animal-derived antibody in targeting tumors of xenotransplanted LS 174T cells in nude mice. The results of this study indicate that the hzAb derived from plant cell suspension cultures may have great potential for pharmaceutical applications in the development of future cancer therapeutic and diagnostic protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Artsaenko O, Peisker M, zur Nieden U, Fiedler U, Weiler EW, Muntz K, Conrad U (1995) Expression of a single-chain Fv antibody against abscisic acid creates a wilty phenotype in transgenic tobacco. Plant J 8:745–750

    Article  PubMed  CAS  Google Scholar 

  • Cabanes-Macheteau M, Fitchette-Laine AC, Loutelier-Bourhis C, Lange C, Vine ND, Ma JK, Lerouge P, Faye L (1999) N-glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology 9:365–732

    Article  PubMed  CAS  Google Scholar 

  • Christou P, Ford TL, Kofron M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/technology 9:957–962

    Article  Google Scholar 

  • Colcher D, Milenic DE, Ferroni P, Carrasquillo JA, Reynolds JC, Roselli M, Larson SM, Schlom J (1990) In vivo fate of monoclonal antibody B72.3 in patients with colorectal cancer. J Nucl Med 31:1133–1142

    PubMed  CAS  Google Scholar 

  • Colcher D, Goel A, Pavlinkova G., Beresford G., Booth B, Batra SK (1999) Effects of genetic engineering on the pharmacokinetics of antibodies. Q J Nucl Med 43:132–139

    PubMed  CAS  Google Scholar 

  • Divgi CR, Scott AM, Dantis L, Capitelli P, Siler K, Hilton S, Finn RD, Kemeny N, Kelsen D, Kostakoglu L et al (1995) Phase I radioimmunotherapy trial with iodine-131-CC49 in metastatic colon carcinoma. J Nucl Med 36:586–592

    PubMed  CAS  Google Scholar 

  • Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182:319–326

    Article  PubMed  CAS  Google Scholar 

  • Girard LS, Fabis MJ, Bastin M, Courtois D, Pétiard V, Koprowski H (2006) Expression of a human anti-rabies virus monoclonal antibody in tobacco cell culture. Biochem Biophys Res Commun 345:602–607

    Article  PubMed  CAS  Google Scholar 

  • Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22:1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Horn ME, Woodard SL, Howard JA (2004) Plant molecular farming: systems and products. Plant Cell Rep 22:711–720

    Article  PubMed  CAS  Google Scholar 

  • Huang LF, Liu YK, Lu CA, Hsieh SL, Yu SM (2005) Production of human serum albumin by sugar starvation induced promoter and rice cell culture. Transgenic Res 14:569–581

    Article  PubMed  CAS  Google Scholar 

  • Hudson PJ (1999) Recombinant antibody constructs in cancer therapy. Curr Opin Immunol 11:548–557

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Larrick JW, Thomas DW (2001) Producing proteins in transgenic plants and animals. Curr Opin Biotechnol 12:411–418

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T (1995) Generation and assembly of secretory antibodies in plants. Science 268:716–719

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Hikmat BY, Wycoff K, Vine ND, Chargelegue D, Yu L, Hein MB, Lehner T (1998) Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med 4:601–606

    Article  PubMed  CAS  Google Scholar 

  • McCormick AA, Kumagai MH, Hanley K, Turpen TH, Hakim I, Grill LK, Tusé D, Levy S, Levy R (1999) Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants. Proc Natl Acad Sci USA 96:703–708

    Article  PubMed  CAS  Google Scholar 

  • Muraro R, Kuroki M, Wunderlich D, Poole DJ, Colcher D, Thor A, Greiner JW, Simpson JF, Molinolo A, Noguchi P et al (1988) Generation and characterization of B72.3 second generation monoclonal antibodies reactive with the tumor-associated glycoprotein 72 antigen. Cancer Res 48:4588–4596

    PubMed  CAS  Google Scholar 

  • Olafsen T, Cheung CW, Yazaki PJ, Li L, Sundaresan G., Gambhir SS, Sherman MA, Williams LE, Shively JE, Raubitschek AA, Wu AM (2004) Covalent disulfide-linked anti-CEA diabody allows site-specific conjugation and radiolabeling for tumor targeting applications. Protein Eng Des Sel 17:21–27

    Article  PubMed  CAS  Google Scholar 

  • Owen M, Gandecha A, Cockburn B, Whitelam G (1992) Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco. Biotechnology (NY) 10:790–794

    Article  CAS  Google Scholar 

  • Proudfoot KA, Torrance C, Lawson AD, King DJ (1992) Purification of recombinant chimeric B72.3 Fab′ and F(ab′)2 using streptococcal protein G. Protein Expr Purif 3:368–373

    Article  PubMed  CAS  Google Scholar 

  • Sharp JM, Doran PM (2001) Characterization of monoclonal antibody fragments produced by plant cells. Biotechnol Bioeng 73:338–346

    Article  PubMed  CAS  Google Scholar 

  • Sheu JJ, Yu TS, Tong WF, Yu SM (1996) Carbohydrate starvation stimulates differential expression of rice alpha-amylase genes that is modulated through complicated transcriptional and posttranscriptional processes. J Biol Chem 271:26998–27004

    Article  PubMed  CAS  Google Scholar 

  • Shin YJ, Hong SY, Kwon TH, Jang YS, Yang MS (2003) High level of expression of recombinant human granulocyte-macrophage colony stimulating factor in transgenic rice cell suspension culture. Biotechnol Bioeng 82:778–783

    Article  PubMed  CAS  Google Scholar 

  • Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42:583–590

    Article  PubMed  CAS  Google Scholar 

  • Sudhakar D, Duc LT, Bong BB, Tinjuangjun P, Bano-Maqbool S, Valdez M, Jefferson R, Christou P (1998) An efficient rice transformation system utilizing mature seed-derived explants and a portable, inexpensive particle bombardment device. Transgenic Res 7:1–6

    Google Scholar 

  • Tavladoraki P, Benvenuto E, Trinca S, De Martinis D, Cattaneo A, Galeffi P (1993) Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366:469–472

    Article  PubMed  CAS  Google Scholar 

  • Terashima M, Ejiri Y, Hashikawa N, Yoshida H (2001) Utilization of an alternative carbon source for efficient production of human alpha (1)-antitrypsin by genetically engineered rice cell culture. Biotechnol Prog 17:403–406

    Article  PubMed  CAS  Google Scholar 

  • Thompson JA, Abdullah R, Cocking EC (1986) Protoplast culture of rice (Oryza sativa L.) using media solidified with agarose. Plant Sci 47:123–133

    Article  Google Scholar 

  • Thor A, Ohuchi N, Szpak CA, Johnston WW, Schlom J (1986) Distribution of oncofetal antigen tumor-associated glycoprotein-72 defined by monoclonal antibody B72.3. Cancer Res 46:3118–3124

    PubMed  CAS  Google Scholar 

  • Torres E, Vaquero C, Nicholson L, Sack M, Stoger E, Drossard J, Christou P, Fischer R, Perrin Y (1999) Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res 8:441–449

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Toyofuku K, Umemura T, Yamaguchi J (1998) Promoter elements required for sugar-repression of the RAmy 3D gene for alpha-amylase in rice. FEBS Lett 428:275–280

    Article  PubMed  CAS  Google Scholar 

  • Vaquero C, Sack M, Schuster F, Finnern R, Drossard J, Schumann D, Reimann A, Fischer R (2002) A carcinoembryonic antigen-specific diabody produced in tobacco. FASEB J 16:408–410

    PubMed  CAS  Google Scholar 

  • Yoon SO, Lee TS, Kim SJ, Jang MH, Kang YJ, Park JH, Kim KS, Lee HS, Ryu CJ, Gonzales NR, Kashmiri SV, Lim SM, Choi CW, Hong HJ (2006) Construction, affinity maturation, and biological characterization of an anti-tumor-associated glycoprotein-72 humanized antibody. J Biol Chem 281:6985–6992

    Article  PubMed  CAS  Google Scholar 

  • Yu SM, Kuo YH, Sheu G., Sheu YJ, Liu LF (1991) Metabolic derepression of alpha-amylase gene expression in suspension-cultured cells of rice. J Biol Chem 266:21131–21137

    PubMed  CAS  Google Scholar 

  • Yu SM, Tzou WS, Lo WS, Kuo YH, Lee HT, Wu R (1992) Regulation of alpha-amylase encoding gene expression in germinating seeds and cultured cells of rice. Gene 122:247–253

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. HyoJeong Hong for kindly providing the hzAb cDNA (Antibody Engineering Research Laboratory, KRIBB, Taejon, Korea). This work was supported by a Korea Research Foundation Grant (KRF-2004-005-F00025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon-Sik Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, SY., Lee, TS., Kim, J. et al. Tumor targeting of humanized fragment antibody secreted from transgenic rice cell suspension culture. Plant Mol Biol 68, 413–422 (2008). https://doi.org/10.1007/s11103-008-9379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9379-4

Keywords

Navigation