Skip to main content
Log in

Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Telomeres in many eukaryotes are maintained by telomerase in whose absence telomere shortening occurs. However, telomerase-deficient Arabidopsis thaliana mutants (Attert /) show extremely low rates of telomere shortening per plant generation (250–500 bp), which does not correspond to the expected outcome of replicative telomere shortening resulting from ca. 1,000 meristem cell divisions per seed-to-seed generation. To investigate the influence of the number of cell divisions per seed-to-seed generation, Attert / mutant plants were propagated from seeds coming either from the lower-most or the upper-most siliques (L- and U-plants) and the length of their telomeres were followed over several generations. The rate of telomere shortening was faster in U-plants, than in L-plants, as would be expected from their higher number of cell divisions per generation. However, this trend was observed only in telomeres whose initial length is relatively high and the differences decreased with progressive general telomere shortening over generations. But in generation 4, the L-plants frequently show a net telomere elongation, while the U-plants fail to do so. We propose that this is due to the activation of alternative telomere lengthening (ALT), a process which is activated in early embryonic development in both U- and L-plants, but is overridden in U-plants due to their higher number of cell divisions per generation. These data demonstrate what so far has only been speculated, that in the absence of telomerase, the number of cell divisions within one generation influences the control of telomere lengths. These results also reveal a fast and efficient activation of ALT mechanism(s) in response to the loss of telomerase activity and imply that ALT is probably involved also in normal plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255:197–200

    Article  PubMed  CAS  Google Scholar 

  • Cesare AJ, Reddel RR (2008) Alternative lengthening of telomeres in mammalian cells. In: Nosek J, Tomaska L (eds) Origin and evolution of telomeres. Austin, Landes Bioscience (in press)

  • Cesare AJ, Quinney N, Willcox S, Subramanian D, Griffith JD (2003) Telomere looping in P-sativum (common garden pea). Plant J 36:271–279

    Article  PubMed  CAS  Google Scholar 

  • Conboy MJ, Karasov AO, Rando TA (2007) High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny. PLoS Biol 5:e102

    Article  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  PubMed  CAS  Google Scholar 

  • Erdmann N, Liu Y, Harrington L (2004) Distinct dosage requirements for the maintenance of long and short telomeres in mTert heterozygous mice. Proc Natl Acad Sci USA 101:6080–6085

    Article  PubMed  CAS  Google Scholar 

  • Fajkus J, Trifonov EN (2001) Columnar packing of telomeric nucleosomes. Biochem Biophys Res Commun 280:961–963

    Article  PubMed  CAS  Google Scholar 

  • Fajkus J, Kovarik A, Kralovics R, Bezdek M (1995) Organization of telomeric and subtelomeric chromatin in the higher-plant Nicotiana-tabacum. Mol Gen Genet 247:633–638

    Article  PubMed  CAS  Google Scholar 

  • Fajkus J, Kovarik A, Kralovics R (1996) Telomerase activity in plant cells. FEBS Lett 391:307–309

    Article  PubMed  CAS  Google Scholar 

  • Fajkus J, Fulneckova J, Hulanova M, Berkova K, Riha K, Matyasek R (1998) Plant cells express telomerase activity upon transfer to callus culture, without extensively changing telomere lengths. Mol Gen Genet 260:470–474

    Article  PubMed  CAS  Google Scholar 

  • Fajkus J, Sykorova E, Leitch AR (2005) Telomeres in evolution and evolution of telomeres. Chromosome Res 13:469–479

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald MS, McKnight TD, Shippen DE (1996) Characterization and developmental patterns of telomerase expression in plants. Proc Natl Acad Sci USA 93:14422–14427

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald MS, Riha K, Gao F, Ren S, McKnight TD, Shippen DE (1999) Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc Natl Acad Sci USA 96:14813–14818

    Article  PubMed  CAS  Google Scholar 

  • Fletcher JC (2002) Coordination of cell proliferation and cell fate decisions in the angiosperm shoot apical meristem. Bioessays 24:27–37

    Article  PubMed  Google Scholar 

  • Forsyth NR, Wright WE, Shay JW (2002) Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation 69:188–197

    Article  PubMed  CAS  Google Scholar 

  • Grandjean O, Vernoux T, Laufs P, Belcram K, Mizukami Y, Traas J (2004) In vivo analysis of cell division, cell growth, and differentiation at the shoot apical meristem in Arabidopsis. Plant Cell 16:74–87

    Article  PubMed  CAS  Google Scholar 

  • Hauguel T, Bunz F (2003) Haploinsufficiency of hTERT leads to telomere dysfunction and radiosensitivity in human cancer cells. Cancer Biol Ther 2:679–684

    PubMed  CAS  Google Scholar 

  • Heacock M, Spangler E, Riha K, Puizina J, Shippen DE (2004) Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for chromosome end-joining. Embo J 23:2304–2313

    Article  PubMed  CAS  Google Scholar 

  • Heller K, Kilian A, Piatyszek MA, Kleinhofs A (1996) Telomerase activity in plant extracts. Mol Gen Genet 252:342–345

    Article  PubMed  CAS  Google Scholar 

  • Jeyapalan JN, Varley H, Foxon JL, Pollock RE, Jeffreys AJ, Henson JD, Reddel RR, Royle NJ (2005) Activation of the ALT pathway for telomere maintenance can affect other sequences in the human genome. Hum Mol Genet 14:1785–1794

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Bailey SM, Okuka M, Munoz P, Li C, Zhou L, Wu C, Czerwiec E, Sandler L, Seyfang A et al (2007) Telomere lengthening early in development. Nat Cell Biol 9:1436–1441

    Article  PubMed  CAS  Google Scholar 

  • Pich U, Fuchs J, Schubert I (1996) How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences? Chromosome Res 4:207–213

    Article  PubMed  CAS  Google Scholar 

  • Riha K, Fajkus J, Siroky J, Vyskot B (1998) Developmental control of telomere lengths and telomerase activity in plants. Plant Cell 10:1691–1698

    Article  PubMed  CAS  Google Scholar 

  • Riha K, McKnight TD, Griffing LR, Shippen DE (2001) Living with genome instability: plant responses to telomere dysfunction. Science 291:1797–1800

    Article  PubMed  CAS  Google Scholar 

  • Siroky J, Zluvova J, Riha K, Shippen DE, Vyskot B (2003) Rearrangements of ribosomal DNA clusters in late generation telomerase-deficient Arabidopsis. Chromosoma 112:116–123

    Article  PubMed  CAS  Google Scholar 

  • Sykorova E, Lim KY, Chase MW, Knapp S, Leitch IJ, Leitch AR, Fajkus J (2003) The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. Plant J 34:283–291

    Article  PubMed  CAS  Google Scholar 

  • Sykorova E, Fajkus J, Meznikova M, Lim KY, Neplechova K, Blattner FR, Chase MW, Leitch AR (2006) Minisatellite telomeres occur in the family Alliaceae but are lost in Allium. Am J Bot 93:814–823

    Article  CAS  Google Scholar 

  • Watson JM, Shippen DE (2007) Telomere rapid deletion regulates telomere length in Arabidopsis thaliana. Mol Cell Biol 27:1706–1715

    Article  PubMed  CAS  Google Scholar 

  • Zellinger B, Akimcheva S, Puizina J, Schirato M, Riha K (2007) Ku suppresses formation of telomeric circles and alternative telomere lengthening in Arabidopsis. Mol Cell 27:163–169

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Zheng C, Hou M, Lindvall C, Li KJ, Erlandsson F, Bjorkholm M, Gruber A, Blennow E, Xu D (2003) Deletion of the telomerase reverse transcriptase gene and haploinsufficiency of telomere maintenance in Cri du chat syndrome. Am J Hum Genet 72:940–948

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Andrew R. Leitch for insightful comments and the manuscript revision, Eva Sýkorová and Dagmar Zachová for helpful advice for cultivation of plant tissue cultures. This work was supported by the Czech Ministry of Education (MSM0021622415, LC06004), Czech Academy of Sciences (AVOZ50040507) and grants from GACR (521/05/0055) and GA ASCR (IAA600040505 and IAA601630703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Fajkus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Růčková, E., Friml, J., Procházková Schrumpfová, P. et al. Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants. Plant Mol Biol 66, 637–646 (2008). https://doi.org/10.1007/s11103-008-9295-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9295-7

Keywords

Navigation