Skip to main content
Log in

Comparison between a coffee single copy chromosomal region and Arabidopsis duplicated counterparts evidenced high level synteny between the coffee genome and the ancestral Arabidopsis genome

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The Arabidopsis thaliana genome sequence provides a catalogue of reference genes that can be used for comparative analysis of other species thereby facilitating map-based cloning in economically important crops. We made use of a coffee bacterial artificial chromosome (BAC) contig linked to the SH3 leaf rust resistance gene to assess microsynteny between coffee (Coffea arabica L.) and Arabidopsis. Microsynteny was revealed and the matching counterparts to C. arabica contigs were seen to be scattered throughout four different syntenic segments of Arabidopsis on chromosomes (Ath) I, III, IV and V. Coffee BAC filter hybridizations were performed using coffee putative conserved orthologous sequences to Arabidopsis predicted genes located on the different Arabidopsis syntenic regions. The coffee BAC contig related to the SH3 region was successfully consolidated and later on validated by fingerprinting. Furthermore, the anchoring markers appeared in same order on the coffee BAC contigs and in all Arabidopsis segments with the exception of a single inversion on AtIII and AtIV Arabidopsis segments. However, the SH3 coffee region appears to be closer to the ancestral genome segment (before the divergence of Arabidopsis and coffee) than any of the duplicated counterparts in the present-day Arabidopsis genome. The genome duplication events at the origin of its Arabidopsis counterparts occurred most probably after the separation (i.e. 94 million years ago) of Euasterid (Coffee) and Eurosid (Arabidopsis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

BEs:

BAC-end sequences

BAC:

Bacterial artificial chromosome

cM:

CentiMorgan

COS:

Conserved orthologous sequence

ESTs:

Expressed sequence tag

Mb:

Megabase

Mya:

Million years

POS:

Putative orthologous sequence

SCAR:

Sequence-characterized amplified region

SGN:

Solanaceae Genomics Network

TAIR:

The Arabidopsis information resource

References

  • Agwanda C, Lashermes P, Trouslot P, Combes MC, Charrier A (1997) Identification of RAPD markers for resistance to Coffee Berry Disease, Colletotrichum kahawae, in Arabica coffee. Euphytica 97:241–248

    Article  CAS  Google Scholar 

  • Blanc G, Barakat A, Guyot R, Cooke R, Delseny M (2000) Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of`chromosomal duplication events. Nature 422:433–438

    Article  PubMed  CAS  Google Scholar 

  • Chapman BA, Bowers JE, Schulze SR, Paterson AH (2004) A comparative phylogenetic approach for dating whole genome duplication events. Bioinformatics 20:180–185

    Article  PubMed  CAS  Google Scholar 

  • Combes MC, Andrzejewski S, Anthony F, Bertrand B, Rovelli P, Graziosi G, Lashermes P (2000) Characterization of microsatellite loci in Coffea arabica and related coffee species. Mol Ecol 9:1178–1180

    Article  PubMed  CAS  Google Scholar 

  • Crepet WL, Nixon KC, Gandolfo MA (2004) Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. Am J Bot 91:1666–1682

    Google Scholar 

  • Cros J, Combes M-C, Trouslot P, Anthony F, Hamon S, Charrier A, Lashermes P (1998) Phylogenetic analysis of chloroplast DNA variation in Coffea L. Mol Phylogenet Evol 9:109–117

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646

    Article  PubMed  CAS  Google Scholar 

  • Ermolaeva MD, Wu M, Eisen JA, Salzberg SL (2003) The age of the Arabidopsis thaliana genome duplication. Plant Mol Biol 51:859–866

    Article  PubMed  CAS  Google Scholar 

  • Foster-Hartnett D, Mudge J, Larsen D, Yan H, Denny R, Penuela S, Young ND (2002) Comparative genomic analysis of sequences sampled from a small region on soybean (Glycine max) molecular linkage group G. Genome 45:634–645

    Article  PubMed  CAS  Google Scholar 

  • Fulton T, van der Hoeven R, Eannetta N, Tanksley S (2002) Identification, analysis and utilization of a conserved ortholog set (COS) markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Article  PubMed  CAS  Google Scholar 

  • Gandolfo MA, Nixon KC, Crepet WL (1998) New fossil flower from the Turonian of New Jersey: Dressiantha bicarpellata gen. et sp. nov. (Capparales). Am J Bot 85:964–974

    Article  Google Scholar 

  • Grant D, Cregan P, Shoemaker RC (2000) Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc Natl Acad Sci USA 97:4168–4173

    Article  PubMed  CAS  Google Scholar 

  • Herrera J-C, Combes M-C, Anthony F, Charrier A, Lashermes P (2002) Introgression into the allotetraploid coffee Coffea arabica L.: segregation and recombination of the C. canephora genome in the tetraploid interspecific hybrid C. arabica × C. canephora. Theor Appl Genet 104:661–668

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Main D, Staton M, Cho I, Zhebentyayeva T, Arús P, Abbott A (2006) Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genomics 7:81–97

    Article  PubMed  CAS  Google Scholar 

  • Kevei Z, Seres A, Kereszt A, Kaló P, Kiss P, Tóth G, Endre G, György B (2005) Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny. Mol Genet Genomics 274:644–657

    Article  PubMed  CAS  Google Scholar 

  • Ku H-M, Vision T, Liu J, Tanksley SD (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97:9121–9126

    Article  PubMed  CAS  Google Scholar 

  • Lagercrantz U, Lydiate D (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910

    PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Bralow A, Daly MJ, Loincoln SE, Newburg L (1987) MAP MAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lashermes P, Combes M-C, Prakash NS, Trouslot P, Lorieux M, Charrier A (2001) Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meioses. Genome 44:589–596

    Article  PubMed  CAS  Google Scholar 

  • Lashermes P, Combes M-C, Robert J, Trouslot P, D’Hont A, Anthony F, Charrier A (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Genet Genomics 261:259–266

    Article  CAS  Google Scholar 

  • Lin C, Mueller LA, McCarthy J, Crouzillat D, Pétiard V, Tanksley SD (2005) Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts. Theor Appl Genet 5:1–17

    Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Maere S, De Bodt S, Raes J, Casneuf T, van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459

    Article  PubMed  CAS  Google Scholar 

  • Marra MA, Kucaba TA, Dietrich NL, Green ED, Brownstein B, Wilson RK, McDonald KM, Hillier L, McPherson J, Waterston R (1997) High throughput fingerprint analysis of large-insert clones. Genome Res 7:1072–1084

    PubMed  CAS  Google Scholar 

  • Mayer K, Murphy G, Tarchini R, Wambutt R, Volckaert G, Pohl T, Düsterhöft A, Stiekema W, Entian K-D, Terryn N, Lemcke K, Haase D, Hall CR, van Dodeweerd A-M, Tingey SV, Mewes H-W, Bevan MW, Bancroft I (2001) Conservation of microstructure between a sequenced region of the genome of rice and multiple segments of the genome of Arabidopsis thaliana. Genome Res 11:1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Moore S, Payton P, Wright M, Tanksley S, Giovannoni J (2005) Utilization of tomato microarrays for comparative gene expression analysis in the Solanaceae. J Exp Bot 56:2885–2895

    Article  PubMed  CAS  Google Scholar 

  • Noir S, Patheyron S, Combes MC, Lashermes P, Bertrand B, Chalhoub B (2004) Construction and characterisation of a BAC library for genome analysis of the allotetraploid coffee species (Coffea arabica L.). Theor Appl Genet 109:225–230

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH (1996) Towards a unified genetic map of higher plants, transcending the monocot–dicot divergence. Nat Genet 14:380–382

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX, Katsar CS, Lan TH, Lin YR, Ming R et al (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1540

    Article  PubMed  CAS  Google Scholar 

  • Prakash NS, Combes MC, Somanna N, Lashermes P (2002) AFLP analysis of introgression in coffee cultivars (Coffea arabica L.) derived from a natural interspecific hybrid. Euphytica 124:265–271

    Article  Google Scholar 

  • Prakash NS, Marques DV, Varzea VMP, Silva MC, Combes MC, Lashermes P (2004) Introgression molecular analysis of a leaf rust resistance gene from Coffea liberica into C. arabica L. Theor Appl Genet 109:1311–1317

    Article  PubMed  CAS  Google Scholar 

  • Rossberg M, Theres K, Acarkan A, Herrero R, Schmitt T, Schumacher K, Schmitz G, Schmidt R (2001) Comparative sequence analysis reveals extensive microcolinearity in the lateral suppressor regions of the tomato, Arabidopsis, and capsella genomes. Plant Cell 13:979–988

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Piegu B, Cooke R, Delseny M (2002) Synteny between Arabidopsis thaliana and rice at the genome level: a tool to identify conservation in the ongoing rice genome sequencing project. Nucleic Acids Res 30:2316–2328

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA

    Google Scholar 

  • Savard L, Li P, Strauss SH, Chase MW, Michaud M, Bousquet J (1994) Chloroplast and nuclear gene sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants. Proc Natl Acad Sci USA 91:5163–5167

    Article  PubMed  CAS  Google Scholar 

  • Simillion C, Vandepoele K, Van Montagu MCE, Zabeau M, Van de Peer Y (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci USA 99:13627–13632

    Article  PubMed  CAS  Google Scholar 

  • Stracke S, Sato S, Sandal N, Koyama M, Kaneko T, Tabata S, Parniske M (2004) Exploitation of colinear relationships between the genomes of Lotus japonicus, Pisum sativum and Arabidopsis thaliana, for positional cloning of a legume symbiosis gene. Theor Appl Genet 108:442–449

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Tomkins JP, Yu Y, Miller-Smith H, Frisch DA, Woo SS, Wing RA (1999) A bacterial artificial chromosome library for sugarcane. Theor Appl Genet 99:419–424

    Article  CAS  Google Scholar 

  • van Dodeweerd A-M, Hall CR, Bent EG, Johnson SJ, Bevan MW, Bancroft I (1999) Identification and analysis of homoeologous segments of the genomes of rice and Arabidopsis thaliana. Genome 42:887–892

    Article  PubMed  Google Scholar 

  • Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117

    Article  PubMed  CAS  Google Scholar 

  • Wolfe K, Gouy M, Yang Y, Sharp P, Li WH (1989) Date of the monocot dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86:5201–5205

    Google Scholar 

  • Wu F, Mueller LA, Crouzillat D, Pétiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single copy, orthologous genes (COS) for comparative, evolutionary and systematic studies: a test case in the Euasterid plant clade. Genetics 174:1407–1420

    Article  PubMed  CAS  Google Scholar 

  • Yan HH, Mudge J, Kim DJ, Larsen D, Shoemaker RC, Cook DR, Young ND (2003) Estimates of conserved microsynteny among the genomes of Glycine max, Medicago truncatula and Arabidopsis thaliana. Theor Appl Genet 106:1256–1265

    PubMed  CAS  Google Scholar 

  • Yan HH, Mudge J, Kim DJ, Larsen D, Denny R, Shoemaker RC, Cook DR, Young ND (2004) Comparative physical mapping reveals features of microsynteny between Glycine max, Medicago truncatula, and Arabidopsis thaliana. Genome 47:141–155

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Romain Guyot for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lashermes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahé, L., Combes, MC. & Lashermes, P. Comparison between a coffee single copy chromosomal region and Arabidopsis duplicated counterparts evidenced high level synteny between the coffee genome and the ancestral Arabidopsis genome. Plant Mol Biol 64, 699–711 (2007). https://doi.org/10.1007/s11103-007-9191-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9191-6

Keywords

Navigation