Skip to main content
Log in

Characterization of an unusual Ds transposable element in Arabidopsis thaliana: Insertion of an abortive circular transposition intermediate

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The maize Ac/Ds transposable elements, which belong to the hAT transposon superfamily, are widely used as insertional mutagens in numerous plant species.Molecular studies suggest that Ac/Ds elements transpose in a conservative non-replicative fashion; however the molecular mechanism of transposition remains unclear. We describe here the identification of an unusual Ds element, Ds-mmd1, in a transgenic Arabidopsis line. Ds-mmd1 is rearranged relative to the original Ds element, such that the original 5′ and 3′ ends are internal and previously internal sequences are the new 5′ and 3′ termini of Ds-mmd1. Short duplications of plant genomic DNA and Ds sequences are present at the Ds-mmd1 junctions, suggesting that a circular Ds molecule was part of the events that created the Ds-mmd1 element. In addition, a revertant analysis on mmd1 plants demonstrated that Ds-mmd1 can be eliminated from the genome in an Ac-dependent process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Athma, P. and Peterson, T. 1991. Ac induces homologous recombination at the maize-P locus. Genetics 128: 163–173.

    Google Scholar 

  • Bancroft, I., Jones, J.D.G. and Dean, C. 1993. Heterologous transposon tagging of the drl1 locus in Arabidopsis. Plant Cell 5: 631–638.

    Google Scholar 

  • Bennetzen, J.L. 2000. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 42: 251–269.

    Google Scholar 

  • Bravo-Angel, A.M., Becker, H.A., Kunze, R., Hohn, B. and Shen, W.H. 1995. The binding motifs for Ac transposase are absolutely required for excision of Ds1 in maize. Mol. Gen. Genet. 248: 527–534.

    Google Scholar 

  • Chatterjee, M. and Nartin, C. 1997. The role of subterminal sites of transposable element Ds of Zea mays in excision. Mol. Gen. Genet. 249: 281–288.

    Google Scholar 

  • Coen, E.S. and Carpenter, R. 1986. Transposable elements in Antirrhinummajus - generators of genetic diversity. Trends Genet. 2: 292–296.

    Google Scholar 

  • Coen, E.S., Carpenter, R. and Martin, C. 1986. Transposable elements generate novel spatial patterns of gene- expression in Antirrhinummajus. Cell 47: 285–296.

    Google Scholar 

  • Coen, E.S., Robbins, T.P., Almedia, J., Hudson, A. and Carpenter, R. 1989. Consequences and mechanism of transposition in Antirrhinum majus. In: D.E. Berg and M.M. Howe (Eds.), Mobile DNA. ASM Press, Washington, DC.

    Google Scholar 

  • Dooner, H.K. and Belachew, A. 1989. Transposition pattern of the maize element Ac from the bz-m2(ac) allele. Genetics 122: 447–457.

    Google Scholar 

  • Fedoroff, N. 2000. Transposons and genome evolution in plants. Proceed. Nat’l. Acad. Sci. USA 97: 7002–7007.

    Google Scholar 

  • Gerlach, W.L., Dennis, E.S., Peacock, W.J., Clegg, M.T. 1987. The Ds1 controlling element family in maize and tripsacum. J. Mol. Evol. 26: 329–334.

    Google Scholar 

  • Gorbunova, V. and Levy, A.A. 1997. Circularized Ac/Ds transposons: formation, structure and fate. Genetics 145: 1161–1169.

    Google Scholar 

  • Gorbunova, V. and Levy, A.A. 1999. How plants make ends meet: DNA double-strand break repair. Trends Plant Sci. 4: 263–269.

    Google Scholar 

  • Gorbunova, V. and Levy, A.A. 2000. Analysis of extrachromosomal Ac/Ds transposable elements. Genetics 155: 349–359.

    Google Scholar 

  • Grossniklaus, U., Vielle-Calzada, J.P., Hoeppner, M.A. and Gagliano, W.B. 1998. Maternal control of embryogenesis by medea, a polycomb group gene in Arabidopsis. Science 280: 446–450.

    Google Scholar 

  • Healy, J., Corr, C., Deyoung, J. and Baker, B. 1993. Linked and unlinked transposition of a genetically marked dissociation element in transgenic tomato. Genetics 134: 571–584.

    Google Scholar 

  • Hehl, R. and Baker, B. 1989. Induced transposition of Ds by a stable Ac in crosses of transgenic tobacco plants. Mol. Gen. Genet. 217: 53–59.

    Google Scholar 

  • Jones, J.D.G., Carland, F., Lim, E., Ralston, E. and Dooner, H.K. 1990. Preferential transposition of the maize element activator to linked chromosomal locations in tobacco. Plant Cell 2: 701–707.

    Google Scholar 

  • Kidwell, M.G. and Lisch, D.R. 2001. Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55: 1–24.

    Google Scholar 

  • Kolesnik, T., Szeverenyi, I., Bachmann, D., Kumar, C.S., Jiang, S., Ramamoorthy, R., Cai, M., Ma, Z.G., Sundaresan, V. and Ramachandran, S. 2004. Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J. 37: 301–314.

    Google Scholar 

  • Kunze, R., Saedler, H. and Lonnig, W.E. 1997. Plant transposable elements. Adv. Bot. Res. 27: 331–470.

    Google Scholar 

  • Kunze, R. and Weil, C.F. 2000.: The hat and cacta superfamilies of plant transposons. In: N.L., Craig R. Craigie M. Gellert A.M. Lambowitz (eds.), Mobile DNA ii, ASM Press, Washington pp. 565–610.

    Google Scholar 

  • Kuromori, T., Hirayama, T., Kiyosue, Y., Takabe, H., Mizukado, S., Sakurai, T., Akiyama, K., Kamiya, A., Ito, T. and Shinozaki, K. 2004. A collection of 11,800 single-copy Ds transposon insertion lines in Arabidopsis. Plant J. 37: 897–905.

    Google Scholar 

  • Liu, Y.G., Mitsukawa, N., Oosumi, T. and Whittier, R.F. 1995. Efficient isolation and mapping of Arabidopsisthaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457–463.

    Google Scholar 

  • Lonnig, W.E. and Saedler, H. 2002. Chromosome rearrangements and transposable elements. Ann. Rev. Genet. 36: 389–410.

    Google Scholar 

  • May, B.P. and Martienssen, R.A. 2003. Transposon mutagenesis in the study of plant development. Crit. Review Plant Sci. 22: 1–35.

    Google Scholar 

  • Muller-Neumann, M., Yoder, J.I. and Starlinger, P. 1984. The DNA sequence of the transposable element Ac of Zea mays l. Mol. Gen. Genet. 198: 19–24.

    Google Scholar 

  • Orel, N., Kyryk, A. and Puchta, H. 2003. Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant J. 35: 604–612.

    Google Scholar 

  • Page, D.R., Kohler, C., da Costa-Nunes, J.A., Baroux, C., Moore, J.M. and Grossniklaus, U. 2004. Intrachromosomal excision of a hybrid Ds element induces large genomic deletions in Arabidopsis. Proceed. Nat’l Acad. Sci. USA 101: 2969–2974.

    Google Scholar 

  • Parinov, S. and Sundaresan, V. 2000. Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project. Curr. Opin. Biotech. 11: 157–161.

    Google Scholar 

  • Peng, J.R., Richards, D.E., Moritz, T., Ezura, H., Carol, P. and Harberd, N.P. 2002. Molecular and physiological characterization of Arabidopsis gai alleles obtained in targeted Ds-tagging experiments. Planta 214: 591–596.

    Google Scholar 

  • Pohlman, R.F., Fedoro., N.V. and Messing, J. 1984. The nucleotide-sequence of the maize controlling element activator. Cell 37: 635–643.

    Google Scholar 

  • Raina, S., Mahalingam, R., Chen, F.Q. and Fedoro., N. 2002. A collection of sequenced and mapped Ds transposon insertion sites in Arabidopsis thaliana. Plant Mol. Biol. 50: 93–110.

    Google Scholar 

  • Rinehart, T.A., Dean, C. and Weil, C.F. 1997. Comparative analysis of non-random DNA repair following Ac transposon excision in Maize and Arabidopsis. Plant J. 12: 1419–1427.

    Google Scholar 

  • Robbins, T.P., Carpenter, R. and Coen, E.S. 1989. A chromosome rearrangement suggests that donor and recipient sites are associated during tam3 transposition in Antirrhinummajus. EMBO J. 8: 5–13.

    Google Scholar 

  • Saedler, H., Gierl, A. 1996: Transposable Elements. Springer, Berlin.

    Google Scholar 

  • Saedler, H., Nevers, P. 1985. Transposition in plants - a molecular model. EMBO J. 4: 585–590.

    Google Scholar 

  • Schwartz, D. 1989. Pattern of ac transposition in maize. Genetics 121: 125–128.

    Google Scholar 

  • Siebert, R. and Puchta, H. 2002. Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell 14: 1121–1131.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, C. and Via, L. 1993. A rapid ctab DNA isolation technique useful for rapid fingerprinting and other PCR applications. Biotechnology 14: 748–750.

    Google Scholar 

  • Sugawara, N., Ira, G. and Haber, J.E. 2000. DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae rad59 in double-strand break repair. Mol. Cell Biol. 20: 5300–5309.

    Google Scholar 

  • Sundaresan, V., Springer, P., Volpe, T., Haward, S., Jones, J.D.G., Dean, C., Ma, H. and Martienssen, R. 1995. Patterns of gene-action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9: 1797–1810.

    Google Scholar 

  • Van Sluys, M.A., Tempe, J. and Fedoroff, N. 1987. Studies on the introduction and mobility of the maize activator element in Arabidopsis thaliana and Daucus carota. EMBO J. 6: 3881–3889.

    Google Scholar 

  • Weil, C.F., Kunze, R. 2000. Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae. Nat. Genet. 26: 187–190.

    Google Scholar 

  • Xiao, Y.-L. and Peterson, T. 2002. Ac transposition is impaired by a small terminal deletion. Mol. Genet. Genomics 266: 720–731.

    Google Scholar 

  • Xiao, Y.L., Peterson, T. 2000. Intrachromosomal homologous recombination in Arabidopsis induced by a maize transposon. Mol. Gen. Genet. 263: 22–29.

    Google Scholar 

  • Yang, X.H., Makaro., C.A., Ma, H. 2003. The Arabidopsis male meiocyte death1 gene encodes a PHD-finger protein that is required for male meiosis. Plant Cell 15: 1281–1295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Ma or Christopher A. Makaroff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Ma, H. & Makaroff, C.A. Characterization of an unusual Ds transposable element in Arabidopsis thaliana: Insertion of an abortive circular transposition intermediate. Plant Mol Biol 55, 905–917 (2004). https://doi.org/10.1007/s11103-005-2225-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-005-2225-z

Key words

Navigation