Skip to main content

Advertisement

Log in

Two-dimensional speckle tracking echocardiography demonstrates no effect of active acromegaly on left ventricular strain

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Background

Speckle tracking echocardiography (STE) allows for the study of myocardial strain (ε), a marker of early and subclinical ventricular systolic dysfunction. Cardiac disease may be present in patients with acromegaly; however, STE has never been used to evaluate these patients.

Objective

To evaluate left ventricular (LV) global longitudinal strain in patients with active acromegaly with normal LV systolic function.

Design

Cross-sectional clinical study.

Methods

Patients with active acromegaly with no detectable heart disease and a control group were matched for age, gender, arterial hypertension and diabetes mellitus underwent STE. Global LV longitudinal ε (GLS), left ventricular mass index (LVMi), left ventricular ejection fraction (LVEF) and relative wall thickness (RWT) were obtained via two-dimensional (2D) echocardiography using STE.

Results

Thirty-seven patients with active acromegaly (mean age 45.6 ± 13.8; 48.6% were males) and 48 controls were included. The mean GLS was not significantly different between the acromegaly group and the control group (in %, −20.1 ± 3.1 vs. −19.4 ± 2.2, p = 0.256). Mean LVMi was increased in the acromegaly group (in g/m2, 101.6 ± 27.1 vs. 73.2 ± 18.6, p < 0.01). There was a negative correlation between LVMi and GLS (r = −0.39, p = 0.01).

Conclusions

Acromegaly patients, despite presenting with a higher LVMi when analyzed by 2D echocardiography, did not present with impairment in the strain when compared to a control group; this finding indicates a low chance of evolution to systolic dysfunction and agrees with recent studies that show a lower frequency of cardiac disease in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Colao A, Ferone D, Marzullo P, Lombardi G (2004) Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev 25:102–152

    Article  CAS  PubMed  Google Scholar 

  2. Holdaway IM, Rajasoorya RC, Gamble GD (2004) Factors influencing mortality in acromegaly. J Clin Endocrinol Metab 89:667–674

    Article  CAS  PubMed  Google Scholar 

  3. Dekkers OM, Biermasz NR, Pereira AM, Romijn JA, Vandenbroucke JP (2008) Mortality in acromegaly: a metaanalysis. J Clin Endocrinol Metab 93:61–67

    Article  CAS  PubMed  Google Scholar 

  4. McCabe J, Ayuk J, Sherlock M (2016) Treatment factors that influence mortality in acromegaly. Neuroendocrinology 103:66–74

    Article  CAS  PubMed  Google Scholar 

  5. Hurchard H (1895) Anatomie pathologique lesions et troubles cardiovasculares de l’acromegalie. J Prat 9:249–251

    Google Scholar 

  6. Lie JTG, S J (1980) Pathology of heart in acromegaly: anatomic findings in 27 autopsied patients. Am Heart J 100:41–52

    Article  CAS  PubMed  Google Scholar 

  7. Colao A, Marzullo P, Di Somma C, Lombardi G Growth hormone and the heart. Clin Endocrinol 54, 137–154 (2001)

    Article  CAS  Google Scholar 

  8. Colao A SL, Cuocolo A, Spiezia S, Pivonello R, di Smma C, Bonaduce D, Salvatore M, Lombardi G (2002) Cardiovascular consequences of early-onset growth hormone excess. J Clin Endocrinol Metab 87:3097–3104

    Article  PubMed  Google Scholar 

  9. Matta MP, Caron P (2003) Acromegalic cardiomyopathy : a review of the literature. Pituitary 6:203–207

    Article  CAS  PubMed  Google Scholar 

  10. Mosca S, Paolillo S, Colao A, Bossone E, Cittadini A, Iudice FL, Parente A, Conte S, Rengo G, Leosco D, Trimarco B, Filardi PP (2013) Cardiovascular involvement in patients affected by acromegaly: an appraisal. Int J Cardiol 167:1712–1718

    Article  PubMed  Google Scholar 

  11. Colao A, Cuocolo A, Marzullo P, Nicolai E, Ferone D, Della Morte AM, Petretta M, Salvatore M, Lombardi G (1999) Impact of patient’s age and disease duration on cardiac performance in acromegaly: a radionuclide angiography study. J Clin Endocrinol Metab 84:1518–1523

    CAS  PubMed  Google Scholar 

  12. Colao A, Cuocolo A, Marzullo P, Nicolai E, Ferone D, Della Morte AM, Pivonello R, Salvatore M, Lombardi G (2001) Is the acromegalic cardiomyopathy reversible? Effect of 5-Year normalization of growth hormone and insulin-like growth factor I levels on cardiac performance. J Clin Endocrinol Metab 86:1551–1557

    CAS  PubMed  Google Scholar 

  13. Bihan H, Espinosa C, Valdes-Socin H, Salenave S, Young J, Levasseur S, Assayag P, Beckers A, Chanson P (2004) Long-term outcome of patients with acromegaly and congestive heart failure. J Clin Endocrinol Metab 89:5308–5313

    Article  CAS  PubMed  Google Scholar 

  14. Mann DL, Zipes DP, Libby P, Bonow RO (2015) Braunwald’s heart disease: a textbook of cardiovascular medicine. 4th edn. Elservier, Amsterdam

    Google Scholar 

  15. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, Nesser HJ, Khandheria B, Narula J, Sengupta PP (2010) Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr 23:351–369, quiz 453–355

    Article  Google Scholar 

  16. de Almeida AL, Gjesdal O, Mewton N, Choi EY, Teixido-Tura G, Yoneyama K, Lima JA (2013) Speckle-Tracking pela Ecocardiografia Bidimensional – Aplicações Clínicas. Revista Brasileira Ecocardiogr imagem cardiovasc 26:38–49

    Google Scholar 

  17. Katznelson L, Laws ER Jr, Melmed S, Molitch ME, Murad MH, Utz A, Wass JA, Endocrine S (2014) Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99:3933–3951

    Article  CAS  PubMed  Google Scholar 

  18. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jones DW, Materson BJ, Oparil S, Wright JT, Roccella EJ, National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure, National High Blood Pressure Education Program Coordinating Committee (2003) The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. Jama. 289:2560–2572

    Article  CAS  PubMed  Google Scholar 

  19. American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62–69

    Article  PubMed Central  Google Scholar 

  20. Lang, RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ, Chamber Quantification Writing Group, American Society of Echocardiography’ Guidelines and Standards Commiitee, European Association of Echocardiography (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 18:1440–1463

    Article  PubMed  Google Scholar 

  21. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39.e14

    Article  PubMed  Google Scholar 

  22. Yingchoncharoen T, Agarwal S, Popovic ZB, Marwick TH (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26:185–191

    Article  PubMed  Google Scholar 

  23. Marwick TH, Leano RL, Brown J, Sun JP, Hoffmann R, Lysyansky P, Becker M, Thomas JD (2009) Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc Imaging 2:80–84

    Article  PubMed  Google Scholar 

  24. Dalen H, Thorstensen A, Aase SA, Ingul CB, Torp H, Vatten LJ, Stoylen A (2010) Segmental and global longitudinal strain and strain rate based on echocardiography of 1266 healthy individuals: the HUNT study in Norway. Eur J Echocardiogr 11:176–183

    Article  PubMed  Google Scholar 

  25. Cheng S, Larson MG, McCabe EL, Osypiuk E, Lehman BT, Stanchev P, Aragam J, Benjamin EJ, Solomon SD, Vasan RS (2013) Age- and sex-based reference limits and clinical correlates of myocardial strain and synchrony: the Framingham Heart Study. Circ Cardiovasc Imaging 6:692–699

    Article  PubMed  Google Scholar 

  26. dos Santos Silva CM, Gottlieb I, Volschan I, Kasuki L, Warszawski L, Balarini Lima GA, Xavier SS, Pedrosa RC, Neto LV, Gadelha MR (2015) Low frequency of cardiomyopathy using cardiac magnetic resonance imaging in an acromegaly contemporary cohort. J Clin Endocrinol Metab 100:4447–4455

    Article  PubMed  Google Scholar 

  27. Marwick TH, Venn AJ (2015) The strain of detecting early target organ damage in hypertension. J Am Coll Cardiol 65:2688–2690

    Article  Google Scholar 

  28. Mignot A, Donal E, Zaroui A, Reant P, Salem A, Hamon C, Monzy S, Roudaut R, Habib G, Lafitte S (2010) Global longitudinal strain as a major predictor of cardiac events in patients with depressed left ventricular function: a multicenter study. J Am Soc Echocardiogr 23:1019–1024

    Article  PubMed  Google Scholar 

  29. Ersboll M, Valeur N, Andersen MJ, Mogensen UM, Vinther M, Svendsen JH, Moller JE, Kisslo J, Velazquez EJ, Hassager C, Sogaard P, Kober L (2013) Early echocardiographic deformation analysis for the prediction of sudden cardiac death and life-threatening arrhythmias after myocardial infarction. JACC Cardiovasc Imaging 6:851–860

    Article  PubMed  Google Scholar 

  30. Almeida AL, Silva VA, Souza Filho AT, Rios VG, Lopes JR, Afonseca SO, Cunha DD, Mendes MO, Miranda DL, Júnior S (2015) Disfunção Ventricular Subclínica Detectada por Speckle Tracking Dois Anos após Uso de Antraciclina. Arq Bras Cardiologia 104:274–283

    Google Scholar 

  31. Jurcut R, Galoiu S, Florian A, Vladaia A, Ionita OR, Amzulescu MS, Baciu I, Popescu BA, Coculescu M, Ginghina C (2014) Quantifying subtle changes in cardiovascular mechanics in acromegaly: a Doppler myocardial imaging study. J Endocrinol Invest 37:1081–1090

    Article  CAS  PubMed  Google Scholar 

  32. Mercuro G, Zoncu S, Colonna P, Cherchi P, Marlotti S, Pigliaru F, Petrini L, Iliceto S (2000) Cardiac dysfunction in acromegaly- evidence by pulsed wave tissue Doppler imaging. Eur J Endocrinol 143:363–369

    Article  CAS  PubMed  Google Scholar 

  33. Galderisi M, Vitale G, Bianco A, Pivonello R, Lombardi G, Divitiis O, Colao A (2006) Pulsed tissue Doppler identifies subclinical myocardial biventricular dysfunction in active acromegaly. Clin Endocrinol 64:390–397

    Google Scholar 

  34. Bogazzi F, Di Bello V, Palagi C, Donne MG, Di Cori A, Gavioli S, Talini E, Cosci C, Sardella C, Brogioni S, Mariani M, Martino E (2005) Improvement of intrinsic myocardial contractility and cardiac fibrosis degree in acromegalic patients treated with somatostatin analogues: a prospective study. Clin Endocrinol 62:590–596

    Article  CAS  Google Scholar 

  35. Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JA, Smiseth OA (2002) Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation 106:50–56

    Article  PubMed  Google Scholar 

  36. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Støylen A, Ihlen H, Lima JA, Smiseth OA, Slørdahl SA (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47:789–793

    Article  PubMed  Google Scholar 

  37. Sacca L, Cittadini A, Fazio S (1994) Growth hormone and the heart. Endocr Rev 15:555–573

    Article  CAS  PubMed  Google Scholar 

  38. Terzolo M, Avonto L, Matrella C, Pozzi R, Luceri S, Borretta G, Pecchio F, Ugliengo G, Magro GP, Reimondo G (1995) Doppler echocardiographic patterns in patients with acromegaly. J Endocrinol Invest 18:613–620

    Article  CAS  PubMed  Google Scholar 

  39. Colao A, Baldelli R, Marzullo P, Ferretti E, Ferone D, Gargiulo P, Petretta M, Tamburrano G, Lombardi G, Liuzzi A (2000) Systemic hypertension and impaired glucose tolerance are independently correlated to the severity of the acromegalic cardiomyopathy. J Clin Endocrinol Metab 85:193–199

    CAS  PubMed  Google Scholar 

  40. Pereira AM, van Thiel SW, Lindner JR, Roelfsema F, van der Wall EE, Morreau H, Smit JW, Romijn JA, Bax JJ (2004) Increased prevalence of regurgitant valvular heart disease in acromegaly. J Clin Endocrinol Metab 89:71–75

    Article  CAS  PubMed  Google Scholar 

  41. Casini AF, Araújo PB, Fontes R, Xavier SS, Gadelha MR (2006) Alteracoes Morfologicas e Funcionais Cardiacas e Análise dos Fatores Determinantes de Hipertrofia Ventricular Esquerda em 40 Pacientes com Acromegalia. Arq Bras Endocrinol Metab 50:82–90

    Article  Google Scholar 

  42. Colao A, Grasso LF (2011) Aortic root ectasia in patients with acromegaly: an emerging complication. Clin Endocrinol 75:420–421

    Article  Google Scholar 

  43. Akdeniz B, Gedik A, Turan O, Ozpelit E, Ikiz AO, Itil O, Badak O, Baris N, Çömlekçi A (2012) Evaluation of left ventricular diastolic function according to new criteria and determinants in acromegaly. Int Heart J 53:299–305

    Article  PubMed  Google Scholar 

  44. López-Velasco R, Escobar-Morreale HF, Vega B, Villa E, Sancho JM, Moya-Mur JL, García-Robles R (1997) Cardiac involvement in acromegaly: specific myocardiopathy or consequence of systemic hypertension? J Clin Endocrinol Metab 82:1047–1053

    PubMed  Google Scholar 

  45. Nascimento GC, de Oliveira MT, Carvalho VC, Lopes MH, Sá AM, Souza MT, Ferreira AS, Ferreira PA, Faria MD (2013) Acromegalic cardiomyopathy in an extensively admixed population: is there a role for GH/IGF-I axis? Clin Endocrinol 78:94–101

    Article  Google Scholar 

  46. Sacca L, Fazio S, Longobardi S, Cittadini A (1999) Cardiac effects of growth hormone in physiology and in heart failure. Endocrine J 46(Suppl):S5–S10

    Article  CAS  Google Scholar 

  47. Sacca L, Napoli R, Cittadini A (2003) Growth hormone, acromegaly, and heart failure: an intricate triangulation. Clin Endocrinol 59:660–671

    Article  CAS  Google Scholar 

  48. Fazio S, Cittadini A, Cuocolo A, Merola B, Sabatini D, Colao A, Biondi B, Lombardi G, Saccà L (1994) Impaired cardiac performance is a distinct feature of uncomplicated acromegaly. J Clin Endocrinol Metab 79:441–446

    CAS  PubMed  Google Scholar 

  49. Fazio S, Cittadini A, Biondi B, Palmieri EA, Riccio G, Bonè F, Oliviero U, Saccà L (2000) Cardiovascular effects of short-term growth hormone hypersecretion. J Clin Endocrinol Metab 85:179–182

    Article  CAS  PubMed  Google Scholar 

  50. Omerovic E, Bollano E, Mobini R, Kujacic V, Madhu B, Soussi B, Fu M, Hjalmarson A, Waagstein F, Isgaard J (2000) Growth hormone improves bioenergetics and decreases catecholamines in postinfarct rat hearts. Endocrinology 141:4592–4599

    Article  CAS  Google Scholar 

  51. Fazio S, Sabatini D, Capaldo B, Vigorito C, Giordano A, Guida R, Pardo F, Biondi B, Saccà L (1996) A preliminary study of growth hormone in the treatment of dilated cardiomyopathy. N Engl J Med 334:809–814

    Article  CAS  PubMed  Google Scholar 

  52. Imanishi R, Ashizawa N, Ohtsuru A, Seto S, Akiyama-Uchida Y, Kawano H, Kuroda H, Nakashima M, Saenko VA, Yamashita S, Yano K (2004) GH suppresses TGF-beta-mediated fibrosis and retains cardiac diastolic function. Mol Cell. Endocrinol 218:137–146

    CAS  Google Scholar 

  53. Bogazzi F, Lombardi M, Strata E, Aquaro G, Di Bello V, Cosci C, Sardella C, Talini E, Martino E (2008) High prevalence of cardiac hypertophy without detectable signs of fibrosis in patients with untreated active acromegaly: an in vivo study using magnetic resonance imaging. Clin Endocrinol 68:361–368

    Article  Google Scholar 

  54. Perdrix L, Mansencal N, Cocheteux B, Chatellier G, Bissery A, Diebold B, Mousseaux E, Abergel E (2011) How to calculate left ventricular mass in routine practice? An echocardiographic versus cardiac magnetic resonance study. Arch Cardiovasc Dis 104:343–351.

    Article  PubMed  Google Scholar 

  55. Bottini PB, Carr AA, Prisant LM, Flickinger FW, Allison JD, Gottdiener JS (1995) Magnetic resonance imaging compared to echocardiography to assess left ventricular mass in the hypertensive patient. Am J Hypertens 8:221–228

    Article  CAS  PubMed  Google Scholar 

  56. Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA, Lima JA (2012) LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. JACC Cardiovasc Imaging 5:837–848

    Article  PubMed  PubMed Central  Google Scholar 

  57. Arosio M, Reimondo G, Malchiodi E, Berchialla P, Borraccino A, De Marinis L, Pivonello R, Grottoli S, Losa M, Cannavo S, Minuto F, Montini M, Bondanelli M, De Menis E, Martini C, Angeletti G, Velardo A, Peri A, Faustini-Fustini M, Tita P, Pigliaru F, Borretta G, Scaroni C, Bazzoni N, Bianchi A, Appetecchia M, Cavagnini F, Lombardi G, Ghigo E, Beck-Peccoz P, Colao A, Terzolo M, Italian Study Group of Acromegaly (2012) Predictors of morbidity and mortality in acromegaly: an Italian survey. Eur J Endocrinol 167:189–198

    CAS  PubMed  Google Scholar 

  58. Varadhan L, Reulen RC, Brown M, Clayton RN (2016) The role of cumulative growth hormone exposure in determining mortality and morbidity in acromegaly: a single centre study. Pituitary 19:251–261

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research has not received funding from any organization or company and was sponsored by the authors themselves.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. C. M. Volschan.

Ethics declarations

Conflict of interest

MRG has received unrestricted research grants and lecture fees from Novartis, Ipsen and Pfizer, has participated on advisory boards of Novartis and Ionis, and is a principal investigator in clinical trials by Novartis and Ipsen. The other authors have no conflicts of interest.

Ethical approval

All procedures performed were in accordance with the ethical standards of the HUCFF/UFRJ ethical committee and with the 1964 Helsinki declaration and its later amendments. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volschan, I.C.M., Kasuki, L., Silva, C.M.S. et al. Two-dimensional speckle tracking echocardiography demonstrates no effect of active acromegaly on left ventricular strain. Pituitary 20, 349–357 (2017). https://doi.org/10.1007/s11102-017-0795-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-017-0795-9

Keywords

Navigation