Skip to main content
Log in

Thrombin generation in Cushing’s Syndrome: do the conventional clotting indices tell the whole truth?

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Cushing’s Syndrome (CS) is associated with an increased mortality, where hypercoagulability seems to have a crucial role in both arterial and venous thrombosis. Parameters of in vitro thrombin generation (TG) such as lag time, peak thrombin and endogenous thrombin potential (ETP), that describe the time until thrombin burst, the peak amount of TG and the total amount of thrombin generated, respectively as well as classical clotting markers were evaluated in 33 CS patients compared to both a group of 28 patients matched for the features of Metabolic Syndrome (MetS) and 31 healthy individuals. CS and MetS patients had shorter lag time (p < 0.0001), higher peak and ETP (p < 0.0001) than healthy controls, though lag time was less shortened in CS (p < 0.0001) respect to MetS group. Prothrombin time (PT) was increased (p < 0.0001) in both CS and MetS patients, while partial thromboplastin time (PTT) was shorter (p < 0.0001) in CS compared to both MetS and healthy group (p < 0.0001). Factor VIII (FVIII), Antithrombin (AT), protein C and S were increased only in CS patients (p < 0.0001). lag time, AT and FVIII correlated to night salivary cortisol (r = + 0.59; p = 0.0005, r = + 0.40; p = 0.003, r = + 0.40; p = 0.04, respectively); PTT correlated inversely to urinary free cortisol (r = −0.45; p = 0.009). BMI correlated negatively to lag time (r = −0.40; p = 0.0001) and positively to peak and ETP (r = + 0.34; p = 0.001, r = + 0.28; p = 0.008, respectively). Obese and diabetic patients had shorter lag time (p = 0.0005; p = 0.0002, respectively), higher ETP (p = 0.0006; p = 0.007, respectively) and peak (p = 0.0003; p = 0.0005, respectively) as well as a more prolonged PT (p = 0.04; p = 0.009, respectively). Hypertensive individuals had higher ETP (p = 0.004), peak (p = 0.0008) and FVIII (p = 0.001). Our findings confirm a prothrombotic state in both CS and MetS patients, though lag time was less shortened in CS. The high levels of endogenous physiological anticoagulants, could possibly represent a protective mechanism against hypercoagulability seen in CS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnaldi G, Agneli A, Atkinson AB, Bertagna X, Cavagnini F, Chrousos GP, Fava GA, Findling JW, Gaillard RC, Grossman AB, Kola B, Lacroix A, Mancini T, Mantero F, Newell-Price J, Nieman LK, Sonino N, Vance ML, Giustina A, Boscaro M (2003) Diagnosis and complications of Cushing’s Syndrome: a consensus statement. J Clin Endocrinol Metab 88:5593–5602

    Article  CAS  PubMed  Google Scholar 

  2. Extabe J, Vasquez JA (1994) Morbidity and mortality in Cushing’s disease: an epidemiological approach. Clin Endocrinol 40:479–484

    Article  Google Scholar 

  3. Lindholm J, Juul S, Jorgensen JOL, Astrup J, Bjerre P, Feldt Rasmussen U, Hagen C, Jorgensen J, Kosteljanetz M, Kristensen LO, Laurberg P, Schmidt K, Weeke J (2001) Incidence and late prognosis of Cushing’s Syndrome: a population based study. J Clin Endocrinol Metab 86:117–123

    CAS  PubMed  Google Scholar 

  4. Dekkers OM, Biermasz NR, Pereira AM, Roelfsema F, Van Aken MO, Voormolen JHC, Romijn JA (2007) Mortality in patients treated for Cushing’s disease is increased compared with patients treated for nonfunctioning pituitary macroadenoma. J Clin Endocrinol Metab 92:976–981

    Article  CAS  PubMed  Google Scholar 

  5. Colao A, Pivonello R, Spiezia S, Faggiano A, Ferone D, Filippella M, Marzullo P, Cerbone G, Siciliani M, Lombardi G (1999) Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J Clin Endocrinol Metab 84:2664–2672

    CAS  PubMed  Google Scholar 

  6. Clayton RN, Raskauskiene D, Reulen RC, Jones PW (2011) Mortality and morbidity in Cushing’s disease over 50 years in Stoke-on-Trent, UK. J Clin Endocrinol Metab 96:632–642

    Article  CAS  PubMed  Google Scholar 

  7. Bolland MJ, Holdaway IM, Berkeley JE, Lim S, Dransfield WJ, Conaglen JV, Croxson MS, Gamble GD, Hunt PJ, Toomath RJ (2011) Mortality and morbidity in Cushing’s Syndrome in New Zealand. Clin Endocrinol 75:436–442

    Article  Google Scholar 

  8. Miljic P, Miljic D, Cain JW, Korbonits M, Popovic V (2012) Pathogenesis of vascular complications in Cushing’s Syndrome. Review. Hormones 11:21–30

    PubMed  Google Scholar 

  9. Manetti L, Bogazzi F, Giovannetti C, Raffaelli V, Genovesi M, Pellegrini G, Ruocco L, Iannelli A, Martino E (2010) Changes of coagulation indexes and occurrence of venous thromboembolism in patients with Cushing’s Syndrome: results from a retrospective study before and after surgery. Euro J Endocrinol 163:783–791

    Article  CAS  Google Scholar 

  10. Fatti LM, Bottasso B, Invitti C, Coppola R, Cavanigni F, Mannucci PM (2000) Markers of activation of coagulation and fibrinolysis in patients with Cushing’s Syndrome. J Endocrinol Invest 23:145–150

    CAS  PubMed  Google Scholar 

  11. Hemker HC, Beguin S (1995) Thrombin generation in plasma: its assessment via the endogenous thrombin potential. Thromb Haemost 74:134–138

    CAS  PubMed  Google Scholar 

  12. Kyrle PA, Mannhalter C, Béguin S, Stumpflen A, Hirschl M, Weltermann A, Stain M, Brenner B, Pabinger K, Eichinger S (1998) Clinical studies and thrombin generation in patients homozygous or heterozygous for the G20210A mutation in the prothrombin gene. Arterioscl Thromb Vasc Biol 18:1287–1291

    Article  CAS  PubMed  Google Scholar 

  13. Siegemund T, Petros S, Siegemund A, Scholz U, Engelmann L (2003) Thrombin generation in severe haemophilia A and B: the endogenous thrombin potential in platelet-rich plasma. Thromb Haemost 90:781–786

    CAS  PubMed  Google Scholar 

  14. Kakkar VV, Hoppenstead DA, Fareed J, Kadziola Z, Scully M, Nakov R, Breddin HK (2002) Randomized trial of different regimens of heparins and in vivo thrombin generation in acute deep vein thrombosis. Blood 99:1965–1970

    Article  CAS  PubMed  Google Scholar 

  15. Ay L, Kopp HP, Brix JM, Ay C, Quehenberger P, Schernthaner GH, Pabinger I, Schernthaner G (2010) Thrombin generation in morbid obesity: significant reduction after weight loss. J Thromb Haemost 8:759–765

    Article  CAS  PubMed  Google Scholar 

  16. Casonato A, Pontara E, Sartorello F, Cattini MG, Sartori MT, Padrini R, Girolami A (2002) Reduced von Willebrand factor survival in type vicenza von Willebrand disease. Blood 99:180–184

    Article  CAS  PubMed  Google Scholar 

  17. Sartori MT, Danesin C, Saggiorato G, Tormene D, Simioni P, Spiezia L, Patrassi GM, Girolami A (2003) The PAI-I gene 4G/5G polymorphism and deep vein thrombosis in patients with inherited thrombophilia. Clin Appl Thromb Hemost 9:299–307

    Article  CAS  PubMed  Google Scholar 

  18. Simioni P (1999) The molecular genetics of familial venous thrombosis. Baillieres Best Pract Res Clin Haematol 12:479–503

    Article  CAS  PubMed  Google Scholar 

  19. Rossetto V, Spiezia L, Franz F, Salmaso L, Pozza LV, Gavasso S, Simioni P (2009) The role of antiphospholipid antibodies toward the protein C/protein S system in venous thromboembolic disease. Am J Hematol 84:594–596

    Article  CAS  PubMed  Google Scholar 

  20. Stuijver DJF, Van Zaane B, Feelders RA, Debeij J, Cannegieter SC, Hermus AR, Van den Berg G, Pereira AM, De Herder WW, Wagenmakers MA, Kerstens MN, Zelissen PM, Fliers E, Schaper N, Drent ML, Dekkers OM, Gerdes VE (2011) Incidence of venous thromboembolism in patients with Cushing’s Syndrome: a multicenter cohort study. J Clin Endocrinol Metab 96:3525–3532

    Article  CAS  PubMed  Google Scholar 

  21. Fritsch P, Kleber M, Rosenkranz A, Fritsch M, Muntean W, Mangge H, Reinehr T (2010) Haemostatic alterations in overweight children: associations between Metabolic Syndrome, thrombin generation, and fibrinogen levels. Atherosclerosis 212:650–655

    Article  CAS  PubMed  Google Scholar 

  22. Ay L, Hoellerl F, Ay C, Brix JM, Koder S, Schernthaner GH, Pabinger I, Schernthaner G (2012) Thrombin generation in type 2 diabetes with albuminuria and macrovascular disease. Euro J Clin Invest 42:470–477

    Article  CAS  Google Scholar 

  23. Tripodi A, Branchi A, Chantarangkul V, Clerici M, Merati G, Artoni A, Mannucci PM (2011) Hypercoagulability in patients with type 2 diabetes mellitus detected by a thrombin generation assay. J Thromb Thrombolysis 31:165–172

    Article  CAS  PubMed  Google Scholar 

  24. Erem C, Nuhoglu I, Yilmaz M, Kocak M, Demirel A, Ucuncu O, Onder Ersoz H (2009) Blood coagulation and fibrinolysis in patients with Cushing’s Syndrome: increased plasminogen activator inhibitor-1, decreased tissue factor pathway inhibitor and unchanged thrombin-activatable fibrinolysis inhibitor levels. J Endocrinol Invest 32:169–174

    CAS  PubMed  Google Scholar 

  25. Van der Pas R, De Bruin C, Leebeek FWG, De Maat MPM, Rijken DC, Pereira AM, Romijn JA, Netea-Maier RT, Hermus AR, Zelissen PMJ, De Jong FH, Van der Lely AJ, De Herder WW, Lamberts SWJ, Hofland LJ, Feelders RA (2012) The hypercoagulable state in Cushing’s disease is associated with increased levels of procoagulant factors and impaired fibrinolysis, but is not reversible after short-term biochemical remission induced by medical therapy. J Clin Endocrinol Metab 97:1303–1310

    Article  PubMed  Google Scholar 

  26. Kastelan D, Dusek T, Kraljevic I, Polasek O, Giljevic Z, Solak M, Salek SZ, Jelcic J, Korsic M (2009) Hypercoagulability in Cushing’s Syndrome: the role of specific haemostatic and fibrinolytic markers. Endocrine 36:70–74

    Article  CAS  PubMed  Google Scholar 

  27. Mann KG, Butenas S, Brummel K (2003) The dynamics of thrombin formation. Arterioscl Thromb Vasc Biol 23:17–25

    Article  CAS  PubMed  Google Scholar 

  28. Smid M, Dielis AW, Winkens M, Spronk HM, Van Oerle R, Hamulyak K, Prins MH, Rosing J, Waltenberger JL, Ten Cate H (2011) Thrombin generation in patients with a first acute myocardial infarction. J Thromb Haemost 9:450–456

    Article  CAS  PubMed  Google Scholar 

  29. Vambergue A, Rugeri L, Gaveriaux V, Devos P, Martin A, Fermon C, Fontaine P, Jude B (2001) Factor VII, tissue factor pathway inhibitor, and monocyte tissue factor in diabetes mellitus: influence of type of diabetes, obesity index, and age. Thromb Res 101:367–375

    Article  CAS  PubMed  Google Scholar 

  30. Cvirn G, Gallistl S, Leschnik B, Muntean W (2003) Low tissue factor pathway inhibitor (TFPI) together with low antithrombin allows sufficient thrombin generation in neonates. J Thromb and Haemost 1:263–268

    Article  CAS  Google Scholar 

  31. Boscaro M, Sonino N, Scarda A, Barzon L, Fallo F, Sartori MT, Patrassi GM, Girolami A (2002) Anticoagulant prophylaxis markedly reduces thromboembolic complications in Cushing’s Syndrome. J Clin Endocrinol Metab 87:3662–3666

    CAS  PubMed  Google Scholar 

  32. Sauls DL, Banini AE, Boyd LC, Hoffman M (2007) Elevated prothrombin level and shortened clotting times in subjects with type 2 diabetes. J Thromb Haemost 5:638–639

    Article  CAS  PubMed  Google Scholar 

  33. Casonato A, Pontara E, Boscaro M, Sonino N, Sartorello F, Ferasin S, Girolami A (1999) Abnormalities in von Willebrand factor are also part of the prothrombotic state of Cushing’s Syndrome. Blood Coagul Fibrinolysis 10:145–151

    Article  CAS  PubMed  Google Scholar 

  34. Koster T, Blann AD, Briet E, Vandenbroucke JP, Rosendaal FR (1995) Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis. Lancet 345:152–155

    Article  CAS  PubMed  Google Scholar 

  35. Cristina L, Benilde C, Michela C, Mirella F, Giuliana G, Gualtiero P (2004) High plasma levels of factor VIII and risk of recurrence of venous thromboembolism. Br J Haematol 124:504–510

    Article  PubMed  Google Scholar 

  36. Koutroumpi S, Daidone V, Sartori MT, Cattini MG, Albiger NM, Occhi G, Ferasin S, Frigo A, Mantero F, Casonato A, Scaroni C (2012) Venous thromboembolism in patients with Cushing’s Syndrome: need of a careful investigation of the prothrombotic risk profile. Pituitary. doi:10.1007/s11102-012-0398-4

    Google Scholar 

  37. Spronk HM, Dielis AW, De Smedt E, Van Oerle R, Fens D, Prins MH, Hamulyák K, Ten Cate H (2008) Assessment of thrombin generation II: validation of the Calibrated Automated Thrombogram in platelet-poor plasma in a clinical laboratory. Thromb Haemost 100(2):362–364

    CAS  PubMed  Google Scholar 

  38. Castoldi E, Rosing J (2011) Thrombin generation tests. Thromb Res 127:S21–S25

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Franco Mantero (University of Padova) for his continuous encouragement and advice as well as Doctor Barry Woodhams for his critical reading of the manuscript.

Conflict of interest

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Scaroni.

Additional information

S. Koutroumpi and L. Spiezia equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koutroumpi, S., Spiezia, L., Albiger, N. et al. Thrombin generation in Cushing’s Syndrome: do the conventional clotting indices tell the whole truth?. Pituitary 17, 68–75 (2014). https://doi.org/10.1007/s11102-013-0467-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-013-0467-3

Keywords

Navigation