Skip to main content

Advertisement

Log in

High prevalence of radiological vertebral fractures in women with prolactin-secreting pituitary adenomas

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Hyperprolactinemia may cause bone loss but data on fractures are scanty. The aim of this study was to evaluate the prevalence of vertebral fractures in women with prolactin (PRL)-secreting adenoma. In this cross-sectional study, 78 women (median age 45.5 years, range: 20–81) with PRL-secreting pituitary adenoma (66 with microadenoma and 12 with macroadenoma) and 156 control subjects, with normal PRL values and with comparable age to patients with hyperprolactinemia, were evaluated for vertebral fractures by a morphometric approach and for bone mineral density (BMD) by a dual-energy X-ray absorptiometry at lumbar spine. Vertebral fractures were shown in 25 patients with PRL-secreting adenoma (32.6%) and in 20 controls (12.8%, P < 0.001). Fractured patients were significantly older (P < 0.001) and had lower BMD T-score (P < 0.001), longer duration of disease (P < 0.001), higher serum PRL (P = 0.004) and lower serum IGF-I (P < 0.001) values as compared to patients who did not fracture. The prevalence of vertebral fractures was significantly (P < 0.001) higher in post-menopausal women with PRL-secreting adenoma as compared to pre-menopausal patients. Fractures occurred more frequently (P = 0.01) in patients with untreated hyperprolactinemia versus patients treated with cabergoline. Logistic regression analysis demonstrated that duration of disease maintained a significant correlation with vertebral fractures (odds ratio 1.16, C.I. 95% 1.02–1.33) even after correction for age, menopausal status, treatment with cabergoline, BMD, serum IGF-I and serum PRL values. Hyperprolactinemia is associated with high prevalence of radiological vertebral fractures in women with PRL-secreting adenoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Melmed S (2008) Update in pituitary disease. J Clin Endocrinol Metab 93:331–338

    Article  PubMed  CAS  Google Scholar 

  2. Mancini T, Casanueva FF, Giustina A (2008) Hyperprolactinemia and prolactinomas. Endocrinol Metab Clin North Am 37:67–99

    Article  PubMed  CAS  Google Scholar 

  3. Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA, Beckers A (2006) High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J Clin Endocrinol Metab 91:4769–4775

    Article  PubMed  CAS  Google Scholar 

  4. Fernandez A, Karavitaki N, Wass JA (2010) Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol 72:377–382

    Article  Google Scholar 

  5. Klibanski A, Biller BM, Rosenthal DI, Schoenfeld DA, Saxe V (1988) Effects of prolactin and estrogen deficiency in amenorrheic bone loss. J Clin Endocrinol Metab 67:124–130

    Article  PubMed  CAS  Google Scholar 

  6. Biller BM, Baum HB, Rosenthal DI, Saxe VC, Charpie PM, Klibanski A (1992) Progressive trabecular osteopenia in women with hyperprolactinemic amenorrhea. J Clin Endocrinol Metab 75:692–697

    Article  PubMed  CAS  Google Scholar 

  7. Ciccarelli E, Savino L, Carlevatto V, Bertagna A, Isaia GC, Camanni F (1988) Vertebral bone density in non-amenorrhoeic hyperprolactinaemic women. Clin Endocrinol 28:1–6

    Article  CAS  Google Scholar 

  8. Greenspan SL, Neer RM, Ridgway EC, Klibanski A (1986) Osteoporosis in men with hyperprolactinemic hypogonadism. Ann Intern Med 104:777–782

    PubMed  CAS  Google Scholar 

  9. Greenspan SL, Oppenheim DS, Klibanski A (1989) Importance of gonadal steroids to bone mass in men with hyperprolactinemic hypogonadism. Ann Intern Med 110:526–531

    PubMed  CAS  Google Scholar 

  10. Schlechte JA, Sherman B, Martin R (1983) Bone density in amenorrheic women with and without hyperprolactinemia. J Clin Endocrinol Metab 56:1120–1123

    Article  PubMed  CAS  Google Scholar 

  11. Coss D, Yang L, Kuo CB, Xu X, Luben RA, Walker AM (2000) Effects of prolactin on osteoblast alkaline phosphatase and bone formation in the developing rat. American J Physiol Endocrinol Metab 279:E1216–E1225

    CAS  Google Scholar 

  12. Seriwatanachai D, Krishnamra N, van Leeuwen JP (2009) Evidence for direct effects of prolactin on human osteoblasts: inhibition of cell growth and mineralization. J Cell Biochem 107:677–685

    Article  PubMed  CAS  Google Scholar 

  13. Seriwatanachai D, Charoenphandhu N, Suthiphongchai T, Krishnamra N (2008) Prolactin decreases the expression ratio of receptor activator of nuclear factor kappaB ligand/osteoprotegerin in human fetal osteoblast cells. Cell Biol Intern 32:1126–1135

    Article  CAS  Google Scholar 

  14. Seriwatanachai D, Thongchote K, Charoenphandhu N, Pandaranandaka J, Tudpor K, Teerapornpuntakit J, Suthiphongchai T, Krishnamra N (2008) Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio. Bone 42:535–546

    Article  PubMed  CAS  Google Scholar 

  15. Shibli-Rahhal A, Schlechte J (2009) The effects of hyperprolactinemia on bone and fat. Pituitary 12:96–104

    Article  PubMed  CAS  Google Scholar 

  16. Vestergaard P, Jørgensen JO, Hagen C, Hoeck HC, Laurberg P, Rejnmark L, Brixen K, Weeke J, Andersen M, Conceicao FL, Nielsen TL, Mosekilde L (2002) Fracture risk is increased in patients with GH deficiency or untreated prolactinomas—a case-control study. Clin Endocrinol 56:159–167

    Article  Google Scholar 

  17. Grigoryan M, Guermazi A, Roemer FW, Delmas PD, Genant HK (2003) Recognizing and reporting osteoporotic vertebral fractures. Eur Spine J 12:S104–S112

    Article  PubMed  Google Scholar 

  18. Mazziotti G, Canalis E, Giustina A (2010) Drug-induced osteoporosis: mechanisms and clinical implications. Am J Med 123:877–884

    Article  PubMed  CAS  Google Scholar 

  19. Kanis JA, McCloskey EV, Johansson H, Strom O, Borgstrom F, Oden A, Group NationalOsteoporosisGuideline (2008) Case finding for the management of osteoporosis with FRAX–assessment and intervention thresholds for the UK. Osteoporos Int 19:1395–1408

    Article  PubMed  CAS  Google Scholar 

  20. Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster JY, Borgstrom F, Rizzoli R, European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) (2008) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 19:399–428

    Article  PubMed  CAS  Google Scholar 

  21. Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D, Cummings SR (1996) Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in the osteoporosis. The study of osteoporotic fractures research group. J Bone Miner Res 11:984–996

    Article  PubMed  CAS  Google Scholar 

  22. Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, Segal M, Genant HK, Cummings SR (1998) The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128:793–800

    PubMed  CAS  Google Scholar 

  23. Jalava T, Sarna S, Pylkkänen L, Mawer B, Kanis JA, Selby P, Davies M, Adams J, Francis RM, Robinson J, McCloskey E (2003) Association between vertebral fracture and increased mortality in osteoporotic patients. J Bone Miner Res 18:1254–1260

    Article  PubMed  Google Scholar 

  24. Lunt M, Felsenberg D, Reeve J, Benevolenskaya L, Cannata J, Dequeker J, Dodenhof C, Falch JA, Masaryk P, Pols HA, Poor G, Reid DM, Scheidt-Nave C, Weber K, Varlow J, Kanis JA, O’Neill TW, Silman AJ (1997) Bone density variation and its effects on risk of vertebral deformity in men and women studied in thirteen European centers: the EVOS Study. J Bone Miner Res 12:1883–1894

    Article  PubMed  CAS  Google Scholar 

  25. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

    Article  PubMed  CAS  Google Scholar 

  26. Cefalu CA (2004) Is bone mineral density predictive of fracture risk reduction? Curr Med Res Opin 20:341–349

    Article  PubMed  Google Scholar 

  27. Olesik A, Ott SM, Vedi S, Bravenboer N, Compston J, Lips P (2000) Bone structure in patients with low bone mineral density with or without vertebral fractures. J Bone Miner Res 15:1368–1375

    Article  Google Scholar 

  28. Parfitt AM (1992) Implications of architecture for the pathogenesis and prevention of vertebral fracture. Bone 13:S41–S44

    Article  PubMed  Google Scholar 

  29. Mazziotti G, Angeli A, Bilezikian JP, Canalis E, Giustina A (2006) Glucocorticoid-induced osteoporosis: an update. Trends Endocrinol Metab 17:144–149

    Article  PubMed  CAS  Google Scholar 

  30. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int 18:427–444

    Article  PubMed  CAS  Google Scholar 

  31. Mancini T, Mazziotti G, Doga M, Carpinteri R, Simetovic N, Vescovi PP, Giustina A (2009) Vertebral fractures in males with type 2 diabetes treated with rosiglitazone. Bone 45:784–788

    Article  PubMed  CAS  Google Scholar 

  32. Mazziotti G, Porcelli T, Patelli I, Vescovi PP, Giustina A (2010) Serum TSH values and risk of vertebral fractures in euthyroid post-menopausal women with low bone mineral density. Bone 46:747–751

    Article  PubMed  CAS  Google Scholar 

  33. Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916

    Article  PubMed  CAS  Google Scholar 

  34. Molitch ME (2002) Medical management of prolactin-secreting pituitary adenomas. Pituitary 5:55–65

    Article  PubMed  CAS  Google Scholar 

  35. Klibanski A, Greenspan SL (1986) Increase in bone mass after treatment of hyperprolactinemic amenorrhea. N Engl J Med 315:542–546

    Article  PubMed  CAS  Google Scholar 

  36. Schlechte J, el-Khoury G, Kathol M, Walkner L (1987) Forearm and vertebral bone mineral in treated and untreated hyperprolactinemic amenorrhea. J Clin Endocrinol Metab 64:1021–1026

    Article  PubMed  CAS  Google Scholar 

  37. Di Somma C, Colao A, Di Sarno A, Klain M, Landi ML, Facciolli G, Pivonello R, Panza N, Salvatore M, Lombardi G (1998) Bone marker and bone density responses to dopamine agonist therapy in hyperprolactinemic males. J Clin Endocrinol Metab 83:807–813

    Article  PubMed  CAS  Google Scholar 

  38. Colao A, Di Somma C, Loche S, Di Sarno A, Klain M, Pivonello R, Pietrosante M, Salvatore M, Lombardi G (2000) Prolactinomas in adolescents: persistent bone loss after 2 years of prolactin normalization. Clin Endocrinol 52:319–327

    Article  CAS  Google Scholar 

  39. Giustina A, Mazziotti G, Canalis E (2008) Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 29:535–559

    Article  PubMed  CAS  Google Scholar 

  40. Rosen T, Wilhelmsen L, Landin-Wilhelmsen K, Lappas G, Bengtsson BA (1997) Increased fracture frequency in adult patients with hypopituitarism and GH deficiency. Eur J Endocrinol 137:240–245

    Article  PubMed  CAS  Google Scholar 

  41. Wuster C, Abs R, Bengtsson BA, Bennmarker H, Feldt-Rasmussen U, Hernberg-Stahl E, Monson JP, Westberg B, Wilton P, KIMS Study Group and the KIMS International Board. Pharmacia & Upjohn International Metabolic Database (2001) The influence of growth hormone deficiency, growth hormone replacement therapy, and other aspects of hypopituitarism on fracture rate and bone mineral density. J Bone Miner Res 16:398–405

    Google Scholar 

  42. Mazziotti G, Bianchi A, Bonadonna S, Nuzzo M, Cimino V, Fusco A, De Marinis L, Giustina A (2006) Increased prevalence of radiological spinal deformities in adult patients with GH deficiency: influence of GH replacement therapy. J Bone Miner Res 21:520–528

    Article  PubMed  CAS  Google Scholar 

  43. Mazziotti G, Bianchi A, Cimino V, Bonadonna S, Martini P, Fusco A, De Marinis L, Giustina A (2008) Effect of gonadal status on bone mineral density and radiological spinal deformities in adult patients with growth hormone deficiency. Pituitary 11:55–61

    Article  PubMed  CAS  Google Scholar 

  44. Casanueva FF, Molitch ME, Schlechte JA, Abs R, Bonert V, Bronstein MD, Brue T, Cappabianca P, Colao A, Fahlbusch R, Fideleff H, Hadani M, Kelly P, Kleinberg D, Laws E, Marek J, Scanlon M, Sobrinho LG, Wass JA, Giustina A (2006) Guidelines of the pituitary society for the diagnosis and management of prolactinomas. Clin Endocrinol 65:265–273

    Article  Google Scholar 

  45. Klibanski A (2010) Clinical practice. Prolactinomas. N Engl J Med 362:1219–1226

    Article  PubMed  CAS  Google Scholar 

  46. Colao A, Di Sarno A, Cappabianca P, Di Somma C, Pivonello R, Lombardi G (2003) Withdrawal of long-term cabergoline therapy for tumoral and nontumoral hyperprolactinemia. N Engl J Med 349:2023–2033

    Article  PubMed  CAS  Google Scholar 

  47. Dekkers OM, Lagro J, Burman P, Jørgensen JO, Romijn JA, Pereira AM (2010) Recurrence of hyperprolactinemia after withdrawal of dopamine agonists: systematic review and meta-analysis. J Clin Endocrinol Metab 95:43–51

    Article  PubMed  CAS  Google Scholar 

  48. Molitch ME (2010) Pituitary gland: can prolactinomas be cured medically? Nat Rev Endocrinol 6:186–188

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Study partially supported by MIUR, EULO and Centro Ricerca Sull’Osteoporosi-University of Brescia.

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Giustina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazziotti, G., Mancini, T., Mormando, M. et al. High prevalence of radiological vertebral fractures in women with prolactin-secreting pituitary adenomas. Pituitary 14, 299–306 (2011). https://doi.org/10.1007/s11102-011-0293-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-011-0293-4

Keywords

Navigation