Skip to main content

Advertisement

Log in

Non-terpenoid biotransformations by Mucor species

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Biotransformation is an important tool for the structural modification of organic compounds, especially natural products with complex structures, which are difficult to achieve using ordinary methods. It is also useful as a model for mammalian metabolism due to similarities between mammalian and microbial enzyme systems. The development of novel biocatalytic methods is a continuously growing area of chemistry, microbiology, and genetic engineering, and novel microorganisms and/or their enzymes are being screened intensively. This review covers the transformation of non-terpenoid compounds such as steroids, coumarins, flavonoids, drugs, pesticides and others by Mucor spp. up to the end of 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adachi T, Sasaki J, Omura S (1989) Hydroxylation and N-demethylation of clarithromycin (6-O-methylerythromycin A) by Mucor circinelloides. J Antibiot 42:1433–1437

    Article  CAS  PubMed  Google Scholar 

  • Alexandre V, Ladril S, Maurs M et al (2004) Microbial models of animal drug metabolism Part 5. Microbial preparation of human hydroxylated metabolites of irbesartan. J Mol Catal B-Enzym 29:173–179

    Article  CAS  Google Scholar 

  • Al-Footy KO (2008a) Microbiological hydroxylation of some epoxy steroids by the fungus Mucor plumbeus. J Chem Res 6:314–317

    Article  Google Scholar 

  • Al-Footy KO (2008b) Biotransformation of some ring A and B epoxy steroids by the fungus Mucor plumbeus. Orient J Chem 24:1–6

    CAS  Google Scholar 

  • Al-Fouti K, Hanson JR (2002) The biotransformation of 4-oxa- and 6-oxa-5α-androstan-17-one by Mucor plumbeus. J Chem Res (S) 11:570–571

    Article  Google Scholar 

  • Anderson JPE, Lichtenstein EP, Whittingham WFJ (1970) Effect of Mucor alternans on the persistence of DDT and Dieldrin in culture and in soil. J Econ Entomol 63:1595–1599

    Article  CAS  PubMed  Google Scholar 

  • Asha S, Vidyavathi M (2009) Cunninghamella—a microbial model for drug metabolism studies—a review. Biotechnol Adv 27:16–29

    Article  CAS  PubMed  Google Scholar 

  • Bhatti HN, Khera RA (2012) Biological transformations of steroidal compounds: a review. Steroids 77:1267–1290

    Article  CAS  PubMed  Google Scholar 

  • Capek A, Tadra M, Kakac B et al (1962) Microbiological transformation of derivatives of hexa-hydronaphthoic acid. Folia Microbiol 7:253–254

    Article  CAS  Google Scholar 

  • Carvalho MB, Martins I, Leitão MC et al (2009) Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota. J Ind Microbiol Biotechnol 36:1249–1256

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE, Hebert RL, Szaniszlo PJ et al (1978) Fungal transformation of naphthalene. Arch Microbiol 117:135–143

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Liu J, Zhang H et al (2009) The betulinic acid production from betulin through biotransformation by fungi. Enzym Microb Technol 45:175–180

    Article  CAS  Google Scholar 

  • Decolin M, Walther B, Villoutreix J et al (1985) Experimental model for in vitro hydroxylation; micromycetes Mucor hiemalis compared to liver microsomal fraction. Biochem Pharmocol 34:401–402

  • Dodson RM, Tweit RC (1960) Oxygenated derivatives of 4,6-pregnadiene-3,20-dione. US 2924611 19600209

  • Duan M, Huang H, Li X et al (2006) Assignments of 1H and 13C NMR spectral data for ondansetron and its two novel metabolites, 1-hydroxy-ondansetron diastereoisomers. Magn Reson Chem 44:972–975

    Article  CAS  PubMed  Google Scholar 

  • El Minofy HA, Hamdi AA, Abd-Elsalam IS (2000) Biotransformation of progesterone to 11α-hydroxyprogesterone using the immobilized spores and mycelium of Mucor racemosus NRRL 3639. Egypt J Microbiol 34:153–166

    Google Scholar 

  • Eppstein SH, Meister PD, Peterson DH et al (1958) Microbiological transformations of steroids. XV. Tertiary hydroxylation of steroids by fungi of the order Mucorales. J Am Chem Soc 80:3382–3389

    Article  CAS  Google Scholar 

  • Eroshin VK (1962) Capacity of mucorales fungi to oxidize steroids. Microbiologia 31:608–615

    CAS  Google Scholar 

  • Faramarzi MA, Badiee M, Tabatabaei MY et al (2008) Formation of hydroxysteroid derivatives from androst-4-ene-3,17-dione by the filamentous fungus Mucor racemosus. J Mol Catal B-Enzym 50:7–12

    Article  CAS  Google Scholar 

  • Ge W, Wang S, Shan L et al (2008) Transformation of 3β-hydroxy-5-en-steroids by Mucor racemosus. J Mol Catal B-Enzym 55:37–42

    Article  CAS  Google Scholar 

  • Hafsah Z, Tahara S, Junya M (1984) Microbial metabolism of chlorinated nitrobenzenes. II. Fungal metabolism of dichloronitrobenzenes. Nippon Noyaku Gakkaishi 9:117–123

    CAS  Google Scholar 

  • Hafsah Z, Tahara S, Junya M (1987a) Microbial metabolism of chlorinated nitrobenzenes. IV. Metabolic pathways of 2,4-dichloro-1-nitrobenzene in Mucor javanicus. Nippon Noyaku Gakkaishi 12:617–625

    CAS  Google Scholar 

  • Hafsah Z, Tahara S, Junya M (1987b) Microbial metabolism of chlorinated nitrobenzenes. III. A glutathione conjugate of 2,4-dichloro-1-nitrobenzene: its detection as a metabolic intermediate and further metabolism in Mucor javanicus. Nippon Noyaku Gakkaishi 12:609–616

    Google Scholar 

  • Hamdi AA, Minofy HAE, Abd-Elsalam IS (2000) Microbiological transformation of progesterone to 11α-hydroxy progesterone using Mucor racemosus NRRL 3639. Egypt J Microbiol 34:167–179

    Google Scholar 

  • Hanson JR, Hitchcock PB, Kiran I (2003) The effect of a 4-formyl and hydroxymethyl substituent on steroid biotransformations by Mucor plumbeus. J Chem Res (S) 3:136–137

    Article  Google Scholar 

  • He X, Tang J, Qiao A et al (2006) Cytotoxic biotransformed products from cinobufagin by Mucor spinosus and Aspergillus niger. Steroids 71:392–402

    Article  CAS  PubMed  Google Scholar 

  • Herath W, Khan IA (2011) Microbial metabolism. Part 13. Metabolites of hesperetin. Bioorg Med Chem Lett 21:5784–5786

    Article  CAS  PubMed  Google Scholar 

  • Herath W, Mikell JR, Khan IA (2009) Microbial metabolism. Part 10: metabolites of 7,8-dimethoxyflavone and 5-methoxyflavone. Nat Prod Res 23:1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Herber R, Villoutreix J, Pierfitte M (1969) 2-Hydroxybiphenyl metabolism in a strain of Mucor. C R Seances Soc Biol Fil 163:1657–1661

    CAS  Google Scholar 

  • Hilário VC, Carrão DB, Barth T et al (2012) Assessment of the stereoselective fungal biotransformation of albendazole and its analysis by HPLC in polar organic mode. J Pharm Biomed 61:100–107

    Article  Google Scholar 

  • Hong SK, Anestis DK, Ball JG et al (2002) In vitro nephrotoxicity induced by chloronitrobenzenes in renal cortical slices from Fischer 344 rats. Toxicol Lett 129:133–141

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Genain G, Azerad R (1995) Microbial transformation of steroids: contribution to 14α-hydroxylations. Steroids 60:337–352

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim A, Khalifa SI, Khafagi I et al (2008) Microbial metabolism of biologically active secondary metabolites from Nerium oleander L. Chem Pharm Bull 56:1253–1258

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim AK, Radwan MM, Ahmed SA et al (2010) Microbial metabolism of cannflavin A and B isolated from Cannabis sativa. Phytochemistry 71:1014–1019

    Article  CAS  PubMed  Google Scholar 

  • Jesus LI, Albuquerque NCP, Borges KB et al (2011) Enantioselective fungal biotransformation of risperidone in liquid culture medium by capillary electrophoresis and hollow fiber liquid-phase microextraction. Electrophoresis 32:2765–2775

    Article  PubMed  Google Scholar 

  • Juengst FW, Alexander M (1976) Conversion of l, l, l-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) to water-soluble products by microorganisms. J Agric Food Chem 24:111–115

    Article  CAS  PubMed  Google Scholar 

  • Khattab AA, Abd-El Salam IS (2012) Construction of new mutants of M. racemosus to improve progesterone biotransformation. Aust J Basic Appl Sci 6:356–363

    CAS  Google Scholar 

  • Kim HJ, Kim S, Kang BY et al (2008) Microbial metabolites of 8-prenylnaringenin, an estrogenic prenylflavanone. Arch Pharm Res 31:1241–1246

    Article  CAS  PubMed  Google Scholar 

  • Krishnan R, Madyastha KM, Seshadri TP et al (1991) The identification of 14α, l7β-dihydroxyandrost-4-ene-3-one monohydrate and 14α,17β-dihydroxyandrosta-1,4-dien-3-one monohydrate, metabolites of androstenedione in Mucor piriformis. Steroids 56:440–445

    Article  CAS  PubMed  Google Scholar 

  • Kurogochi S, Tahara S, Mizutani J (1974) Fungal metabolites of sorbic acid. Agric Biol Chem 38:893–895

    Article  CAS  Google Scholar 

  • Kurogochi S, Tahara S, Mizutani J (1975) Fungal reduction of C6 α, β-unsaturated carboxylic acids. Agric Biol Chem 39:825–831

    Article  CAS  Google Scholar 

  • Lacroix I, Biton J, Azerad R (1999) Microbial models of drug metabolism: microbial transformations of Trimegestone® (RU27987), a 3-Keto-Δ4,9(10)-19-norsteroid. Drug Bioorg Med Chem 7:2329–2341

    Article  CAS  PubMed  Google Scholar 

  • Lamm AS, Chen ARM, Reynolds WF et al (2007) Steroid hydroxylation by Whetzelinia sclerotiorum, Phanerochaete chrysosporium and Mucor plumbeus. Steroids 72:713–722

    Article  CAS  PubMed  Google Scholar 

  • Li H-P, Yu P, Zhang H-J et al (2008) Synthesis of 5-androstene-3β,7α,17β-triol and 5-androstene-3β,7β,17β-triol. Chin J Chem 26:1666–1668

    Article  CAS  Google Scholar 

  • Lièvremont D, Seigle-Murandi F, Benoit-Guyod J et al (1996) Biotransformation and biosorption of pentachloronitrobenzene by fungal mycelia. Mycol Res 100:948–954

  • Lilly MD (1994) Advances in biotransformation processes. Chem Eng Sci 49:151–159

    Article  CAS  Google Scholar 

  • Lv X, Xin X, Deng S et al (2012) Biotransformation of osthole by Mucor spinosus. Process Biochem 47:2542–2546

    Article  CAS  Google Scholar 

  • Ma L, Liu X, Liang J et al (2011) Biotransformations of cinnamaldehyde, cinnamic acid and acetophenone with Mucor. World J Microbiol Biotechnol 27:2133–2137

    Article  CAS  Google Scholar 

  • Madyastha KM (1994) Preparatively useful transformations of steroids and morphine alkaloids by Mucor piriformis. In: Proceedings-Indian Academy of Sciences, Chemical Sciences, pp 1203–1212

  • Madyastha KM, Srivatsan J (1987) Novel transformations of progesterone by a Mucor sp. Can J Microbiol 33:361–365

    Article  CAS  Google Scholar 

  • Madyastha KM, Reddy GVB, Nagarajappa H et al (2000) N-Demethylation and N-oxidation of thebaine, an isoquinoline alkaloid by Mucor piriformis. Indian J Chem Sect B 39B:377–381

    CAS  Google Scholar 

  • Mahato SB, Banerjee S (1985) Steroid transformations by microorganisms II. Phytochemistry 24:1403–1421

    Article  CAS  Google Scholar 

  • Mahato SB, Garai S (1997) Advances in microbial steroid biotransformation. Steroids 62:332–345

    Article  CAS  PubMed  Google Scholar 

  • Mahato SB, Majumdar I (1993) Current trends in microbial steroid biotransformation. Phytochemistry 34:883–898

    Article  CAS  PubMed  Google Scholar 

  • Mahato SB, Mukherjee A (1984) Steroid transformations by microorganisms. Phytochemistry 23:2131–2154

    Article  CAS  Google Scholar 

  • Marshall VP, Mcgovren JP, Richard FA et al (1978) Microbial metabolism of anthracycline antibiotics daunomycin and adriamycin. J Antibiot 31:336–342

    Article  CAS  PubMed  Google Scholar 

  • Mikell JR, Khan IA (2012) Bioconversion of 7-hydroxyflavanone: isolation, characterization and bioactivity evaluation of twenty-one phase I and phase II microbial metabolites. Chem Pharm Bull 60:1139–1145

    Article  CAS  PubMed  Google Scholar 

  • Mikell JR, Herath W, Khan IA (2011) Microbial metabolism. Part 12. Isolation, characterization and bioactivity evaluation of eighteen microbial metabolites of 4′-hydroxyflavanone. Chem Pharm Bull 59:692–697

    Article  CAS  PubMed  Google Scholar 

  • Moussa C, Houziaux P, Danree B et al (1997) Microbial models of mammalian metabolism. Fungal metabolism of phenolic and nonphenolic p-cymene-reported drugs and prodrugs. I. Metabolites of thymoxamine. Drug Metab Dispos 25:301–310

    CAS  PubMed  Google Scholar 

  • Murray HC, Peterson DH (1952) Oxidation of steroids by Mucorales fungi. US Patent 2,602,769

  • Murray HC, Peterson DH (1956) Steroids. US Patent 2,735,800

  • Murray HC, Peterson DH (1957) 8-Hydroxy-11-deoxycorticosterones. US Patent 2,800,490

  • Ouazzani J, Servy C, Bloy C et al (1995) Fungal metabolite of naftazone inhibits nitrite production by activated murine macrophages. Bioorg Med Chem Lett 5:1825–1828

    Article  CAS  Google Scholar 

  • Parshikov IA, Freeman JP, Lay JO et al (1999) Regioselective transformation of ciprofoxacin to N-acetylciprofoxacin by the fungus Mucor ramannianus. FEMS Microbiol Lett 177:131–135

    Article  CAS  PubMed  Google Scholar 

  • Parshikov IA, Freeman JP, Lay JO et al (2000) Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. Appl Environ Microb 66:2664–2667

    Article  CAS  Google Scholar 

  • Parshikov IA, Freeman JP, Lay JO et al (2001) Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. J Ind Microbiol Biot 26:140–144

    Article  CAS  Google Scholar 

  • Peart PC, Chen ARM, Reynolds WF et al (2012) Entrapment of mycelial fragments in calcium alginate: a general technique for the use of immobilized filamentous fungi in biocatalysis. Steroids 77:85–90

    Article  CAS  PubMed  Google Scholar 

  • Quintana MG, Dalton H (1999) Biotransformation of aromatic compounds by immobilized bacterial strains in barium alginate beads. Enzym Microb Technol 24:232–236

    Article  CAS  Google Scholar 

  • Rosazza JP, Smith RV (1979) Microbial models for drug metabolism. Adv Appl Microbiol 25:169–208

    Article  CAS  PubMed  Google Scholar 

  • Rosche B, Sandford V, Breuer M et al (2001) Biotransformation of benzaldehyde into (R)-phenylacetylcarbinol by filamentous fungi or their extracts. Appl Microbiol Biotechnol 57:309–315

    Article  CAS  PubMed  Google Scholar 

  • Sasaki J, Mizoue K, Morimoto S et al (1988) Microbial transformation of 6-O-methylerythromycin derivatives. J Antibiot 41:908–915

    Article  CAS  PubMed  Google Scholar 

  • Seigle-Murandi F, Guiraud P, Steiman R et al (1992) Phenoloxidase production and vanillic acid metabolism by Zygomycetes. Microbiologica 15:157–165

    CAS  PubMed  Google Scholar 

  • Seo J, Jeon J, Kim S et al (2007) Fungal biodegradation of carbofuran and carbofuran phenol by the fungus Mucor ramannianus: identification of metabolites. Water Sci Technol 55:163–167

    Article  CAS  PubMed  Google Scholar 

  • Shan L, Liu H, Huang K et al (2009) Synthesis of 3β,7α,11α-trihydroxy-pregn-21-benzylidene-5-en-20-one derivatives and their cytotoxic activities. Bioorg Med Chem Lett 19:6637–6639

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Sehgal SN, Vezina C (1967) Transformation of steroids by Mucor griseocyanus. Can J Microbiol 13:1271–1282

    Article  CAS  PubMed  Google Scholar 

  • Smith RV, Rosazza JP (1975) Microbial models of mammalian metabolism. J Pharm Sci 64:1737–1758

    Article  CAS  PubMed  Google Scholar 

  • Smith RV, Rosazza JP (1983) Microbial models of mammalian metabolism. J Nat Prod 46:79–91

    Article  CAS  PubMed  Google Scholar 

  • Smith KE, Latif S, Kirk DN et al (1989) Microbial transformations of steroids-IV. 6,7-dehydrogenation; a new class of fungal steroid transformation product. J Steroid Biochem 33:271–276

    Article  CAS  PubMed  Google Scholar 

  • Srisailam K, Veeresham C (2010) Biotransformation of celecoxib using microbial cultures. Appl Biochem Biotechnol 160:2075–2089

    Article  CAS  PubMed  Google Scholar 

  • Szewczyk R, Dlugonski J (2009) Pentachlorophenol and spent engine oil degradation by Mucor ramosissimus. Int Biodeterior Biodegrad 63:123–129

    Article  CAS  Google Scholar 

  • Tahara S, Suzuki Y, Mizutani J (1977) Fungal metabolism of trans-2-octenoic acid. Agric Biol Chem 41:1643–1650

    Article  CAS  Google Scholar 

  • Tahara S, Hafsah Z, Ono A et al (1981) Metabolites of 2,4-dichloro-l-nitrobenzene by Mucor javanicus. Agric Biol Chem 45:2253–2258

    Article  CAS  Google Scholar 

  • Torshabi M, Badiee M, Faramarzi MA et al (2011) Biotransformation of methyltestosterone by the filamentous fungus Mucor racemosus. Chem Nat Compd 47:59–63

    Article  CAS  Google Scholar 

  • Wang H, Ni J, Cao X et al (2010) Study on biotransformation of natural coumarin by marine fungus Mucor sp. MNP801 and volatile composition. Zhongguo Haiyang Yaowu 29:6–9

    Google Scholar 

  • Xu J, Yang L, Zhao S et al (2011) Microbial glycosylation of cardamonin by Mucor spinosus. Yaoxue Xuebao 46:733–737

    CAS  Google Scholar 

  • Ye M, Qu G, Guo H et al (2004a) Specific 12β-hydroxylation of cinobufagin by filamentous fungi. Appl Environ Microbiol 70:3521–3527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ye M, Qu G, Guo H et al (2004b) Novel cytotoxic bufadienolides derived from bufalin by microbial hydroxylation and their structure–activity relationships. J Steroid Biochem Mol Biol 91:87–98

    Article  CAS  PubMed  Google Scholar 

  • Ye M, Han J, Tu G et al (2005a) Microbial hydroxylation of bufalin by Cunninghamella blakesleana and Mucor spinosus. J Nat Prod 68:626–628

    Article  CAS  PubMed  Google Scholar 

  • Ye M, Han J, An D et al (2005b) New cytotoxic bufadienolides from the biotransformation of resibufogenin by Mucor polymorphosporus. Tetrahedron 61:8947–8955

    Article  CAS  Google Scholar 

  • Zhan J, Guo H, Dai J et al (2001) Biotransformation of gastrodin by Mucor spinosus. J Chin Pharm Sci 10:187–189

    CAS  Google Scholar 

  • Zhan J, Zhang Y, Liu W et al (2003) Directional modifications of resibufogenin by Mucor subtilissimus and Pseudomonas aeruginosa. Biocatal Biotransform 21:141–143

    Article  CAS  Google Scholar 

  • Zhan J, Guo H, Ning L et al (2006) Efficient preparation of derivatives of resibufogenin using microbial catalytic technique. Planta Med 72:346–350

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Zhan J, Chen Y et al (2003) Biotransformation of three free anthraquinones by Mucor spinosus. Zhongguo Tianran Yaowu 1:219–223

    CAS  Google Scholar 

  • Zhang W, Ye M, Qu G et al (2005) Microbial hydroxylation of cinobufagin by Mucor spinosus. J Asian Nat Prod Res 7:225–229

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, He G, Liu J et al (2008) Production of gastrodin through biotransformation of p-2-hydroxybenzyl alcohol by cultured cells of Armillaria luteo-virens Sacc. Enzym Microb Technol 43:25–30

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Josefina Aleu or Isidro González Collado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, E.d.O., Furtado, N.A.J.C., Aleu, J. et al. Non-terpenoid biotransformations by Mucor species. Phytochem Rev 14, 745–764 (2015). https://doi.org/10.1007/s11101-014-9374-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-014-9374-0

Keywords

Navigation