Skip to main content

Advertisement

Log in

Aloe barbadensis: how a miraculous plant becomes reality

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Aloe barbadensis Miller is a plant that is native to North and East Africa and has accompanied man for over 5,000 years. The aloe vera plant has been endowed with digestive, dermatological, culinary and cosmetic virtues. On this basis, aloe provides a range of possibilities for fascinating studies from several points of view, including the analysis of chemical composition, the biochemistry involved in various activities and its application in pharmacology, as well as from horticultural and economic standpoints. The use of aloe vera as a medicinal plant is mentioned in numerous ancient texts such as the Bible. This multitude of medicinal uses has been described and discussed for centuries, thus transforming this miracle plant into reality. A summary of the historical uses, chemical composition and biological activities of this species is presented in this review. The latest clinical studies involved in vivo and in vitro assays conducted with aloe vera gel or its metabolites and the results of these studies are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Acevedo-Duncan M, Russell C, Patel S, Patel R (2004) Aloe-emodin modulates PKC isozymes, inhibits proliferation, and induces apoptosis in U-373MG glioma cells. Int Immunopharmacol 4:1775–1784

    PubMed  CAS  Google Scholar 

  • Adler H, Frech B, Thoeny M, Pfister H, Peterhans E, Jungi TW (1995) Inducible nitric oxide synthase in cattle. Differential cytokine regulation of nitric oxide synthase in bovine and murine macrophages. J Immunol 154:4710–4718

    PubMed  CAS  Google Scholar 

  • Ahmed MJ, Singh Z, Khan AS (2009) Postharvest Aloe vera gel-coating modulates fruit ripening and quality of ‘Arctic snow’ nectarine kept in ambient and cold storage. Int J Food Sci Technol 44:1024–1033

    CAS  Google Scholar 

  • Alberti KGMM, Zimmet P, Shaw J (2005) The metabolic syndrome—a new worldwide definition. Lancet 366:1059–1062

    PubMed  Google Scholar 

  • Arunkumar S, Muthuselvam M (2009) Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens. World J Agric Sci 5:572–576

    CAS  Google Scholar 

  • Ashafa AT, Abass A A, Sunmonu TO, Ogbe A A (2011) Laxative potential of the ethanolic leaf extract of Aloe vera (L.) Burm. f. in Wistar rats with loperamide-induced constipation. J Nat Pharm 2:158

    Google Scholar 

  • Ashnagar A, Naseri NG, Heidarzadeh A (2006) Isolation and identification of the major chemical compounds found in the extracts of the leaves of Aloe vera plant. Int J Chem Sci 4:1025–1030

    CAS  Google Scholar 

  • Bassetti A, Sala S (2001) El gran libro del Aloe. Ediciones Zuccari, Trento

    Google Scholar 

  • Benítez S, Achaerandio I, Sepulcre F, Pujolà M (2013) Aloe vera based edible coatings improve the quality of minimally processed ‘Hayward’ kiwifruit. Postharvest Biol Technol 81:29–36

    Google Scholar 

  • Bezakova L, Oblozinsky M, Sykorova M, Paulikova I, Kostalova D (2005) Antilipoxygenase activity and the trace elements content of Aloe vera in relation to the therapeutical effect. Ceska Slov Farm 54:43–46

    PubMed  CAS  Google Scholar 

  • Boudreau MD, Beland FA (2006) An evaluation of the biological and toxicological properties of Aloe barbadensis (Miller) aloe vera. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 24:103–154

    PubMed  CAS  Google Scholar 

  • Bowden RA (1995) The effect of a mannose-rich extract on integrin expression on vascular endothelial cells. Texas A&M University, Houston

    Google Scholar 

  • Capasso F, Mascolo N, Autore G, Duraccio MR (1983) Effect of indomethacin on aloin and 1,8 dioxianthraquinone-induced production of prostaglandins in rat isolated colon. Prostaglandins 26:557–562

    PubMed  CAS  Google Scholar 

  • Carter S (1994) Aloaceae. In: Polhill RM (ed). Balkema, Rotterdam

  • Chithra P, Sajithlal GB, Chandrakasan G (1998) Influence of aloe vera on the healing of dermal wounds in diabetic rats. J Ethnopharmacol 59:195–201

    PubMed  CAS  Google Scholar 

  • Choi J-S, Lee S-K, Sung C-K, Jung J-H (1996) Phytochemical study on Aloe vera. Arch Pharmacal Res 19:163–167

    CAS  Google Scholar 

  • Chow JT-N, Williamson DA, Yates KM, Goux WJ (2005) Chemical characterization of the immunomodulating polysaccharide of Aloe vera L. Carbohydr Res 340:1131–1142

    CAS  Google Scholar 

  • Conner JM, Gray AI, Waterman PG, Reynolds T (1990) Novel anthrone-anthraquinone dimers from Aloe elgonica. J Nat Prod 53:1362–1364

    CAS  Google Scholar 

  • Dang KTH, Singh Z, Swinny EE (2008) Edible coatings influence fruit ripening, quality, and aroma biosynthesis in mango fruit. J Agric Food Chem 56:1361–1370

    PubMed  CAS  Google Scholar 

  • Davis RH, Maro NP (1989) Aloe vera and gibberellin. Anti-inflammatory activity in diabetes. J Am Podiatr Med Assoc 79:24–26

    PubMed  CAS  Google Scholar 

  • Davis RH, Leitner MG, Russo JM, Byrne ME (1989) Anti-inflammatory activity of Aloe vera against a spectrum of irritants. J Am Podiatr Med Assoc 79:263–276

    PubMed  CAS  Google Scholar 

  • DiscoverLife (2013) http://www.discoverlife.org/. August 2013

  • El-Shemy HA, Aboul-Soud MAM, Nassr-Allah AA, Aboul-Enein KM, Kabash A, Yagi A (2010) Antitumor properties and modulation of antioxidant enzymes activity by Aloe vera leaf active principles isolated via supercritical carbon dioxide extraction. Curr Med Chem 17:129–138

    PubMed  CAS  Google Scholar 

  • Evans WC (1989) Trease and Evans’ pharmacology. 13th edn/ed., Boilliere Tindall, London

  • Fanali S, Aturki Z, D’Orazio G, Rocco A, Ferranti A, Mercolini L, Raggi MA (2010) Analysis of Aloe-based phytotherapeutic products by using nano-LC-MS. J Sep Sci 33:2663–2670

    PubMed  CAS  Google Scholar 

  • Farahnejad Z, Ghazanfari T, Yaraee R (2011) Immunomodulatory effects of Aloe vera and its fractions on response of macrophages against Candida albicans. Immunopharmacol Immunotoxicol 33:676–681

    PubMed  Google Scholar 

  • Femenia A, Sanchez ES, Simal S, Rossello C (1999) Compositional features of polysaccharides from Aloe vera (Aloe barbadensis Miller) plant tissues. Carbohydr Polym 39:109–117

    CAS  Google Scholar 

  • Fugh-Berman A (2000) Herbs and dietary supplements in the prevention and treatment of cardiovascular disease. Prev Cardiol 3:24–32

    PubMed  CAS  Google Scholar 

  • Garber G (2001) An overview of fungal infections. Drugs 61(Suppl 1):1–12

    PubMed  Google Scholar 

  • Gowda DC, Neelisiddaiah B, Anjaneyalu YV (1979) Structural studies of Polysaccharides from Aloe-vera. Carbohydr Res 72:201–205

    CAS  Google Scholar 

  • Grieve M (1998) A modern herbal. Tiger Books International, London

    Google Scholar 

  • Grindlay D, Reynolds T (1986a) The Aloe-vera phenomenon—a review of the properties and modern uses of the leaf parenchyma gel. J Ethnopharmacol 16:117–151

    PubMed  CAS  Google Scholar 

  • Grindlay D, Reynolds T (1986b) The Aloe vera phenomenon: a review of the properties and modern uses of the leaf parenchyma gel. J Ethnopharmacol 16:117–151

    PubMed  CAS  Google Scholar 

  • Habeeb F, Shakir E, Bradbury F, Cameron P, Taravati MR, Drummond AJ, Gray AI, Ferro VA (2007) Screening methods used to determine the anti-microbial properties of Aloe vera inner gel. Methods (Oxford, UK) 42:315–320

  • Haffner SM (2006) The metabolic syndrome: inflammation, diabetes mellitus, and cardiovascular disease. Am J Cardiol 97:3A–11A

    PubMed  CAS  Google Scholar 

  • Hamman JH (2008) Composition and applications of Aloe vera leaf gel. Molecules 13:1599–1616

    PubMed  CAS  Google Scholar 

  • Harlev E, Nevo E, Lansky EP, Ofir R, Bishayee A (2012) Anticancer potential of aloes: antioxidant, antiproliferative, and immunostimulatory attributes. Planta Med 78:843–852

    PubMed  CAS  Google Scholar 

  • Harris C, Pierce K, King G, Yates KM, Hall J, Tizard I (1991) Efficacy of acemannan in treatment of canine and feline spontaneous neoplasms. Mol Biother 3:207–213

    PubMed  CAS  Google Scholar 

  • Haynes LJ, Holdsworth DK, Russell R (1970) C-glycosyl compounds. Part VI. Aloesin, a C-glucosylchromone from Aloe sp. J Chem Soc C Org 18:2581–2586

    Google Scholar 

  • Holdsworth DK (1972) Chromones in aloe species. II. Aloesone. Planta Med. 22:54–58

    PubMed  CAS  Google Scholar 

  • Hranisavljevic-Jakovljevic M, Miljkovic-Stojanovic J (1981) Structural study of an acidic polysaccharide isolated from Aloe arborescens Mill. I. Periodate oxidation and partial acid hydrolysis. Glas Hem Drus Beogr 46:269–273

    CAS  Google Scholar 

  • Hsu S-C, Chung J-G (2012) Anticancer potential of emodin. BioMedicine (Taipei, Taiwan) 2:108–116

  • Ian T, Yawei N (2004) Aloe polysaccharides. In: Reynolds T (ed) Aloes the genus Aloe. CRC Press, Bocaraton, FL, pp 75–87

    Google Scholar 

  • Im S-A, Oh S-T, Song S, Kim M-R, Kim D-S, Woo S-S, Jo TH, Park YI, Lee C-K (2005) Identification of optimal molecular size of modified Aloe polysaccharides with maximum immunomodulatory activity. Int Immunopharmacol 5:271–279

    PubMed  CAS  Google Scholar 

  • Ishi Y, Tanizawa H, Takino Y (1990) Studies of aloe. III. Mechanism of cathartic effect. (2). Chem Pharm Bull 38:197–200

    CAS  Google Scholar 

  • Khoshgozaran-Abras S, Azizi MH, Hamidy Z, Bagheripoor-Fallah N (2012) Mechanical, physicochemical and color properties of chitosan based-films as a function of Aloe vera gel incorporation. Carbohydr Polym 87:2058–2062

    CAS  Google Scholar 

  • Kim I, Kwon H (2006) Induction of apoptosis by Aloe vera extract in human hepatocellular carcinoma HepG2 cells. J Toxicol Public Health 22:329–332

    CAS  Google Scholar 

  • Kinoshita K, Koyama K, Takahashi K, Noguchi Y, Amano M (1996) Steroid glucosides from Aloe barbadensis. J Jpn Botany 71:83–86

    Google Scholar 

  • Kwon KH, Hong MK, Hwang SY, Moon BY, Shin S, Baek JH, Park YH (2011) Antimicrobial and immunomodulatory effects of Aloe vera peel extract. J Med Plants Res 5:5384–5392

    CAS  Google Scholar 

  • Lawrence R, Tripathi P, Jeyakumar E (2009) Isolation, purification and evaluation of antibacterial agents from Aloe vera. Braz J Microbiol 40:906–915

    PubMed  CAS  Google Scholar 

  • Lee S, Do S-G, Kim SY, Kim J, Jin Y, Lee CH (2012) Mass spectrometry-based metabolite profiling and antioxidant activity of Aloe vera (Aloe barbadensis Miller) in different growth stages. J Agric Food Chem 60:11222–11228

    PubMed  CAS  Google Scholar 

  • Lin K-Y, Uen Y-H (2010) Aloe-emodin, an anthraquinone, in vitro inhibits proliferation and induces apoptosis in human colon carcinoma cells. Oncol Lett 1:541–547

    PubMed  CAS  Google Scholar 

  • Lopez A, de Tangil MS, Vega-Orellana O, Ramirez AS, Rico M (2013) Phenolic constituents, antioxidant and preliminary antimycoplasmic activities of leaf skin and flowers of Aloe vera (L.) Burm. f. (syn. A. barbadensis Mill.) from the Canary Islands (Spain). Molecules 18:4942–4954

    PubMed  CAS  Google Scholar 

  • Lopez-Jornet P, Camacho-Alonso F, Molino-Pagan D (2013) Prospective, randomized, double-blind, clinical evaluation of Aloe vera Barbadensis, applied in combination with a tongue protector to treat burning mouth syndrome. J Oral Pathol Med 42:295–301

    PubMed  Google Scholar 

  • Low DT (2006) A reason to season: the therapeutic benefits of spices and culinary herbs. Explore (NY) 2:446–449

    Google Scholar 

  • Lv L, Yang Q-Y, Zhao Y, Yao C-S, Sun Y, Yang E-J, Song K-S, Mook-Jung I, Fang W-S (2008) BACE1 (β-secretase) inhibitory chromone glycosides from Aloe vera and Aloe nobilis. Planta Med 74:540–545

    PubMed  CAS  Google Scholar 

  • Mabusela WT, Stephen AM, Botha MC (1990) Carbohydrate polymers from Aloe ferox leaves. Phytochemistry 29:3555–3558

    CAS  Google Scholar 

  • Maithani A, Parcha V, Pant G, Dhulia I, Kumar D (2011) Studies on phytochemical screening and hypoglycemic evaluation of Aloe vera leave extracts on alloxan induced diabetic rats. Int J Res Phytochem Pharmacol 1:207–210

    CAS  Google Scholar 

  • Mandal G, Das A (1980a) Characterization of the polysaccharides of Aloe barbadensis Miller. Part II. Structure of the glucomannan isolated from the leaves of Aloe barbadensis Miller. Carbohydr Res 87:249–256

    CAS  Google Scholar 

  • Mandal G, Das A (1980b) Characterization of the polysaccharides of Aloe barbadensis. Part I. Structure of the d-galactan isolated from Aloe barbadensis Miller. Carbohydr Res 86:247–257

    CAS  Google Scholar 

  • Manna S, McAnalley BH (1993) Determination of the position of the O-acetyl group in a beta-(1 → 4)-mannan (acemannan) from Aloe barbardensis Miller. Carbohydr Res 241:317–319

    PubMed  CAS  Google Scholar 

  • Marpudi SL, Abirami LSS, Pushkala R, Srividya N (2011) Enhancement of storage life and quality maintenance of papaya fruits using Aloe vera based antimicrobial coating. Indian J Biotechnol 10:83–89

    CAS  Google Scholar 

  • McMahon M, Regan F, Hughes H (2006) The determination of total germanium in real food samples including Chinese herbal remedies using graphite furnace atomic absorption spectroscopy. Food Chem 97:411–417

    CAS  Google Scholar 

  • Meng I, Yang BZ, Hu G, Lu Y, Liu Y (2004) Determination of components of anthraquinones in Aloe vera. Beijing Huagong Daxue Xuebao Ziran Kexueban 31:70–73

    CAS  Google Scholar 

  • Misawa E, Tanaka M, Nomaguchi K, Nabeshima K, Yamada M, Toida T, Iwatsuki K (2012) Oral ingestion of Aloe vera phytosterols alters hepatic gene expression profiles and ameliorates obesity-associated metabolic disorders in zucker diabetic fatty rats. J Agric Food Chem 60:2799–2806

    PubMed  CAS  Google Scholar 

  • Moniruzzaman M, Rokeya B, Ahmed S, Bhowmik A, Khalil MI, Gan SH (2012) In vitro antioxidant effects of Aloe barbadensis Miller extracts and the potential role of these extracts as antidiabetic and antilipidemic agents on streptozotocin-induced type 2 diabetic model rats. Molecules 17:12851–12867

    PubMed  CAS  Google Scholar 

  • Newton LE (2001) Aloe. In: Eggli U (ed) Illustrated handbook of succulent plants: monocotyledons. Springer, Berlin

    Google Scholar 

  • Ni Y, Turner D, Yates KM, Tizard I (2004) Isolation and characterization of structural components of Aloe vera L. leaf pulp. Int Immunopharmacol 4:1745–1755

    PubMed  CAS  Google Scholar 

  • Niciforovic A, Adzic M, Zaric B, Radojcic MB (2007) Adjuvant antiproliferative and cytotoxic effect of aloin in irradiated HeLaS3 cells. Russ J Phys Chem A 81:1463–1466

    CAS  Google Scholar 

  • Okamura N, Hine N, Harada S, Fujioka T, Mihashi K, Yagi A (1996) Three chromone components from Aloe vera leaves. Phytochemistry 43:495–498

    CAS  Google Scholar 

  • Okamura N, Hine N, Harada S, Fujioka T, Mihashi K, Nishi M, Miyahara K, Yagi A (1997a) Diastereomeric C-glucosylanthrones of Aloe vera leaves. Phytochemistry 45:1519–1522

    CAS  Google Scholar 

  • Okamura N, Hine N, Tateyama Y, Nakazawa M, Fujioka T, Mirmhi K, Yagi A (1997b) Three chromones of Aloe vera leaves. Phytochemistry 45:1511–1513

    CAS  Google Scholar 

  • Okamura N, Hine N, Tateyama Y, Nakazawa M, Fujioka T, Mihashi K, Yagi A (1998) Five chromones from Aloe Vera leaves. Phytochemistry 49:219–223

    CAS  Google Scholar 

  • Ovodova RG, Lapchik VF, Ovodov YS (1975) Polysaccharides of Aloe arborescens. Khim Prir Soedin 11:3–5

    CAS  Google Scholar 

  • Pandey R, Mishra A (2010) Antibacterial activities of crude extract of Aloe barbadensis to clinically isolated bacterial pathogens. Appl Biochem Biotechnol 160:1356–1361

    PubMed  CAS  Google Scholar 

  • Park MK, Park JH, Shin YG, Kim WY, Lee JH, Kim KH (1996) Neoaloesin A. A new C-glucofuranosyl chromone from Aloe barbadensis. Planta Med 62:363–365

    PubMed  CAS  Google Scholar 

  • Park MK, Park JH, Kim NY, Shin YG, Choi YS, Lee JG, Kim KH, Lee SK (1998) Analysis of 13 phenolic compounds in Aloe species by high performance liquid chromatography. Phytochem Anal 9:186–191

    CAS  Google Scholar 

  • Patel DK, Patel K, Tahilyani V (2012) Barbaloin: a concise report of its pharmacological and analytical aspects. Asian Pac J Trop Biomed 2:835–838

    PubMed  CAS  Google Scholar 

  • Paulsen BS, Fagerheim E, Oeverbye E (1978) Structural studies of the polysaccharide from Aloe plicatilis Miller. Carbohydr Res 60:345–351

    CAS  Google Scholar 

  • Pecere T, Gazzola MV, Mucignat C, Parolin C, Dalla VF, Cavaggioni A, Basso G, Diaspro A, Salvato B, Carli M, Palu G (2000) Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Res 60:2800–2804

    PubMed  CAS  Google Scholar 

  • Pugh N, Ross SA, ElSohly MA, Pasco DS (2001) Characterization of Aloeride, a new high-molecular-weight polysaccharide from Aloe vera with potent immunostimulatory activity. J Agric Food Chem 49:1030–1034

    PubMed  CAS  Google Scholar 

  • Pulse TL, Uhlig E (1990) A significant improvement in a clinical pilot study utilizing nutritional supplements, essential fatty acids and stabilized aloe vera juice in 29 HIV seropositive, ARC and AIDS patients. J Adv Med 3:209–230

    Google Scholar 

  • Radjabi-Nassab F, Ramiliarison C, Monneret C, Vilkas E (1984) Further studies of the glucomannan from Aloe vahombe (liliaceae). II. Partial hydrolyses and NMR carbon-13 studies. Biochimie 66:563–567

    PubMed  CAS  Google Scholar 

  • Ramachandra CT, Srinivasa Rao P (2008) Processing of Aloe vera leaf gel: a review. Am J Agric Biol Sci 3:502–510

    Google Scholar 

  • Rauwald HW (1990) Naturally occurring quinones and their related reduction forms: analysis and analytical methods. PZ Wiss 3:169–181

    CAS  Google Scholar 

  • Rauwald HW, Niyonzima DD (1991) Free and cinnamoylated 8-O-methyl-7-hydroxyaloins from Aloe barbadensis: isolation, structure, and configurational determination of the diastereoisomers. Planta Med 57:A129. doi:10.1055/s-2006-960426

    Google Scholar 

  • Reynolds GW (1966) The aloes of tropical Africa and Madagascar. Aloes Book Fund, Mbabane

    Google Scholar 

  • Reynolds T (1985) Observations on the phytochemistry of the Aloë leaf-exudate compounds. Bot J Linn Soc 90:179–199

    Google Scholar 

  • Reynolds T (2004) Aloes: the genus Aloe. Medicinal and aromatic plants-industrial profiles. CPR Press, Boca Raton, FL

    Google Scholar 

  • Reynolds T, Dweck AC (1999) Aloe vera leaf gel: a review update. J Ethnopharmacol 68:3–37

    PubMed  CAS  Google Scholar 

  • Robson MC, Heggers JP, Hagstrom WJ Jr (1982) Myth, magic, witchcraft, or fact? Aloe vera revisited. J Burn Care Rehabil 3:157–163

    CAS  Google Scholar 

  • Rowe TD, Parks LM (1941) A phytochemical study of Aloe vera leaf. J Am Pharm Assoc (1912–1977) 30:262–266

    Google Scholar 

  • Saccu D, Bogoni P, Procida G (2001) Aloe exudate: characterization by reversed phase HPLC and headspace GC-MS. J Agric Food Chem 49:4526–4530

    PubMed  CAS  Google Scholar 

  • Saleem R, Faizi S, Deeba F, Siddiqui BS, Qazi MH (1997) A new bisbenzopyran from Aloe barbadensis roots. Planta Med 63:454–456

    PubMed  CAS  Google Scholar 

  • Saleen R, Faizi S, Deeba F, Siddiqui BS, Qazi MH (1997) Anthrones from Aloe barbadensis. Phytochemistry 45:1279–1282

    CAS  Google Scholar 

  • Scala A, Checchi L, Montevecchi M, Marini I, Giamberardino MA (2003) Update on burning mouth syndrome: overview and patient management. Crit Rev Oral Biol Med 14:275–291

    PubMed  CAS  Google Scholar 

  • Schweizer M (1994) Aloe vera. La planta que cura. APB, Paris

    Google Scholar 

  • Scopus (2013) http://www.scopus.com/. August 2013

  • Segal A, Taylor JA, Eoff JC (1968) A re-investigation of the polysaccharide material from Aloe vera mucilage. Lloydia 31:423

  • Serrano M, Valverde JM, Guillen F, Castillo S, Martinez-Romero D, Valero D (2006) Use of Aloe vera gel coating preserves the functional properties of table grapes. J Agric Food Chem 54:3882–3886

    PubMed  CAS  Google Scholar 

  • Sigler A, Rauwald HW (1994) First proof of anthrone aglycons and diastereomeric anthrone-C-glycosyls in flowers and bracts of Aloe species. Biochem Syst Ecol 22:287–290

    CAS  Google Scholar 

  • Silva SS, Popa EG, Gomes ME, Cerqueira M, Marques AP, Caridade SG, Teixeira P, Sousa C, Mano JF, Reis RL (2013) An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine. Acta Biomater 9:6790–6797

    PubMed  CAS  Google Scholar 

  • Song H-Y, Jo W-S, Song N-B, Min SC, Song KB (2013) Quality change of apple slices coated with Aloe vera gel during storage. J Food Sci 78(6):C817–C822

    Google Scholar 

  • Speranza G, Manitto P, Cassara P, Monti D (1993) Feralolide, a dihydroisocoumarin from Cape aloe. Phytochemistry 33:175–178

    CAS  Google Scholar 

  • Steenkamp V, Stewart MJ (2007) Medicinal applications and toxicological activities of Aloe. Products. Pharm Biol 45:411–420

    CAS  Google Scholar 

  • Swanson LN (1995) Therapeutic value of aloe vera. US Pharmacy 20:26–35

    Google Scholar 

  • Tan Z, Li F, Xu X (2012) Isolation and purification of aloe anthraquinones based on an ionic liquid/salt aqueous two-phase system. Sep Purif Technol 98:150–157

    CAS  Google Scholar 

  • Tanaka M, Misawa E, Ito Y, Habara N, Nomaguchi K, Yamada M, Toida T, Hayasawa H, Takase M, Inagaki M, Higuchi R (2006) Identification of five phytosterols from Aloe vera gel as anti-diabetic compounds. Biol Pharm Bull 29:1418–1422

    PubMed  CAS  Google Scholar 

  • Tapsell LC, Hemphill I, Cobiac L, Patch CS, Sullivan DR, Fenech M, Roodenrys S, Keogh JB, Clifton PM, Williams PG, Fazio VA, Inge KE (2006) Health benefits of herbs and spices: the past, the present, the future. Med J Aust 185:S4–S24

    PubMed  Google Scholar 

  • Tarameshloo M, Norouzian M, Zarein-Dolab S, Dadpay M, Gazor R (2012a) A comparative study of the effects of topical application of Aloe vera, thyroid hormone and silver sulfadiazine on skin wounds in Wistar rats. Lab Anim Res 28:17–21

    PubMed  Google Scholar 

  • Tarameshloo M, Norouzian M, Zarein-Dolab S, Dadpay M, Mohsenifar J, Gazor R (2012b) Aloe vera gel and thyroid hormone cream may improve wound healing in Wistar rats. Anat Cell Biol 45:170–177

    PubMed  Google Scholar 

  • ‘T Hart LA, van den Berg AJ, Kuis L, van Dijk H, Labadie RP (1989) An anti-complementary polysaccharide with immunological adjuvant activity from the leaf parenchyma gel of Aloe vera. Planta Med 55:509–512

  • ‘T Hart LA, Nibbering PH, van den Berselaar MT, van Dijk H, van den Berg AJ, Labadie RP (1990) Effects of low molecular constituents from Aloe vera gel on oxidative metabolism and cytotoxic and bactericidal activities of human neutrophils. Int J Immunopharmacol 12:427–434

  • Tizard IR, Ramamoorthy L (2004) Aloes and the immune system. In: Tom Reynolds (ed) Medicinal aromatic plants—industrial profiles, vol. 38. CRC Press, Boca Raton, pp 311–332

  • Tundis R, Loizzo MR, Menichini F (2010) Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Rev Med Chem 10:315–331

    PubMed  CAS  Google Scholar 

  • Valverde JM, Valero D, Martinez-Romero D, Guillen F, Castillo S, Serrano M (2005) Novel edible coating based on Aloe vera gel to maintain table grape quality and safety. J Agric Food Chem 53:7807–7813

    PubMed  CAS  Google Scholar 

  • Vanitha M, Suja Pandian R, Karthikeyan J (2013) Evaluation of aloevera gel for its anti inflammatory activity in diabetes mellitus using animal model system. Int J Drug Dev Res 5:305–309

    Google Scholar 

  • Vazquez B, Avila G, Segura D, Escalante B (1996) Antiinflammatory activity of extracts from Aloe vera gel. J Ethnopharmacol 55:69–75

    PubMed  CAS  Google Scholar 

  • Viljoen AM, van Wyk B-E, van Heerden FR (2002) The chemotaxonomic value of the diglucoside anthrone homonataloside B in the genus Aloe. Biochem Syst Ecol 30:35–43

    Google Scholar 

  • Vilkas E, Radjabi-Nassab F (1986) The glucomannan system from Aloe vahombe (liliaceae). III. Comparative studies on the glucomannan components isolated from the leaves. Biochimie 68:1123–1127

    PubMed  CAS  Google Scholar 

  • Vinson JA, Al Kharrat H, Andreoli L (2005) Effect of Aloe vera preparations on the human bioavailability of vitamins C and E. Phytomedicine 12:760–765

    PubMed  CAS  Google Scholar 

  • Vogler BK, Ernst E (1999) Aloe vera: a systematic review of its clinical effectiveness. Br J Gen Pract 49:823–828

    PubMed  CAS  Google Scholar 

  • Waller GR, Mangiafico S, Ritchey CR (1978) A chemical investigation of Aloe barbadensis Miller. Proc Okla Acad Sci 58:69–76

    CAS  Google Scholar 

  • Wozniewski T, Blaschek W, Franz G (1990) Isolation and structure analysis of a glucomannan from the leaves of Aloe arborescens var. Miller. Carbohydr Res 198:387–391

    CAS  Google Scholar 

  • Wu X, Yin S, Zhong J, Ding W, Wan J, Xie Z (2012) Mushroom tyrosinase inhibitors from Aloe barbadensis Miller. Fitoterapia 83:1706–1711

    PubMed  CAS  Google Scholar 

  • Wu X, Ding W, Zhong J, Wan J, Xie Z (2013) Simultaneous qualitative and quantitative determination of phenolic compounds in Aloe barbadensis Mill by liquid chromatography–mass spectrometry–ion trap-time-of-flight and high performance liquid chromatography–diode array detector. J Pharm Biomed Anal 80:94–106

    PubMed  CAS  Google Scholar 

  • Xiao Z, Chen D, Si J, Tu G, Ma L (2000) Chemical constituents of Aloe vera. Yaoxue Xuebao 35:120–123

    CAS  Google Scholar 

  • Yagi A, Makino K, Nishioka I, Kuchino Y (1977) Aloe-mannan, polysaccharide, from Aloe arborescens var natalensis. Planta Med 31:17–20

    PubMed  CAS  Google Scholar 

  • Yagi A, Hamada K, Mihashi K, Harada N, Nishioka I (1984) Structure determination of polysaccharides in Aloe saponaria (Hill.) Haw. (Liliaceae). J Pharm Sci 73:62–65

    PubMed  CAS  Google Scholar 

  • Yagi A, Nishimura H, Shida T, Nishioka I (1986) Structure determination of polysaccharides in Aloe arborescens var natalensis. Planta Med 3:213–218

    Google Scholar 

  • Yagi A, Hine N, Asai M, Nakazawa M, Tateyama Y, Okamura N, Fujioka T, Mihashi K, Shimomura K (1998) Tetrahydroanthracene glucosides in callus tissue from Aloe barbadensis leaves. Phytochemistry 47:1267–1270

    CAS  Google Scholar 

  • Yamaguchi I, Mega N, Sanada H (1993) Components of the gel of Aloe vera (L.) Burm. f. Biosci Biotechnol Biochem 57:1350–1352

    PubMed  CAS  Google Scholar 

  • Yang Q-Y, Yao C-S, Fang W-S (2010) A new triglucosylated naphthalene glycoside from Aloe vera L. Fitoterapia 81:59–62

    PubMed  CAS  Google Scholar 

  • Yau Y-h, Ho K-c, Xu J-l, Leung K-l, Leung Y-h (2011) Evaluation of two house plants for indoor air purification. Chengshi Huanjing Yu Chengshi Shengtai 24:1–4

    CAS  Google Scholar 

  • Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS (2003) Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 26:1277–1294

    PubMed  CAS  Google Scholar 

  • Zhang L, Tizard IR (1996) Activation of a mouse macrophage cell line by acemannan: the major carbohydrate fraction from Aloe vera gel. Immunopharmacology 35:119–128

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía (Project P10-AGR5822).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco A. Macías.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinchilla, N., Carrera, C., Durán, A.G. et al. Aloe barbadensis: how a miraculous plant becomes reality. Phytochem Rev 12, 581–602 (2013). https://doi.org/10.1007/s11101-013-9323-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-013-9323-3

Keywords

Navigation