Skip to main content

Advertisement

Log in

Antibiotics from gliding bacteria

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

In recent years the discovery of some most important antibiotic compounds obtained by fermenting environmental microbes has been reported, providing proof that isolation and fermentation of producer strains is a significant approach to decifer novel structural types of antibiotics. Whereas many microbial taxa and environments have been well investigated in the past (e.g. soil-borne actinomycetes), the high diversity of microbial populations in certain habitats, e.g. marine sediments, has to date only been exploited marginally. Myxobacteria, the most prominent class of gliding bacteria, are well known for their ability to produce structurally intriguing natural products; however, so far no myxobacterial antibiotic has been developed for clinical use. In our studies, the antibacterial activity of the myxobacterial metabolite corallopyronin A was further investigated. Feeding studies with labeled precursors allowed to deduce all building blocks for the formation of corallopyronin A, whereby its biosynthesis from two chains probably connected by a Claisen-type reaction and the incorporation of bicarbonate into the methyl carbamate functionality can be regarded as unusual characteristics. A trans-AT type mixed PKS/NRPS gene cluster containing a β-branching cassette was identified as the putative basis for corallopyronin A biosynthesis in Corallococcus coralloides. Our research also resulted in the cultivation of several unusual marine myxobacteria which produce antibiotically active molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Belogurov GA, Vassylyeva MN, Sevostyanova A, Appleman JR, Xiang AX, Lira R, Webber SE, Klyuyev S, Nudler E, Artsimovitch I, Vassylyev DG (2009) Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457:332–335

    Article  PubMed  CAS  Google Scholar 

  • Bode HB, Müller R (2006) Analysis of myxobacterial secondary metabolism goes molecular. J Ind Microbiol Biotechnol 33:577–588

    Article  PubMed  CAS  Google Scholar 

  • Butler MS, Cooper MA. (2011) Antibiotics in the clinical pipeline in 2011. J Antibiot (Tokyo) 64413–64425

  • Clardy J, Fischbach MA, Walsh CT (2006) New antibiotics from bacterial natural products. Nat Biotechnol 24:1541–1550

    Article  PubMed  CAS  Google Scholar 

  • Coates A, Hu Y, Bax R, Page C (2002) The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov. 1:895–910

    Article  PubMed  CAS  Google Scholar 

  • Davies J (2011) How to discover new antibiotics: harvesting the parvome. Curr Opin Chem Biol 15:5–10

    Article  PubMed  CAS  Google Scholar 

  • Donadio S, Maffioli S, Monciardini P, Sosio M, Jabes D (2010) Sources of novel antibiotics. Appl Microbiol Biotechnol 88:1261–1267

    Article  PubMed  CAS  Google Scholar 

  • Erol Ö, Schäberle TF, Schmitz A, Kehraus S, Piel J, Gurgui C, Rachid S, Müller R, König GM (2010) Biosynthesis of the myxobacterial antibiotic corallopyronin A. ChemBioChem 11:1253–1265

    Article  PubMed  CAS  Google Scholar 

  • Fabbretti A, Gualerzi CO, Brandi L (2011) How to cope with the quest for new antibiotics. FEBS Lett 585:1673–1681

    Article  PubMed  CAS  Google Scholar 

  • Fischbach MA (2009) Antibiotics from microbes: converging to kill. Curr Opin Microbiol 12:520–527

    Article  PubMed  CAS  Google Scholar 

  • Fudou R, Iizuka T, Yamanaka S (2001a) Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 1. Fermentation and biological characteristics. J Antibiot (Tokyo) 54:149–152

    Article  CAS  Google Scholar 

  • Fudou R, Iizuka T, Sato S, Ando T, Shimba N, Yamanaka S (2001b) Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 2. Isolation and structural elucidation. J Antibiot (Tokyo) 54:153–156

    Article  CAS  Google Scholar 

  • Fudou R, Jojima Y, Iizuka T, Yamanaka S (2002) Haliangium ochraceum gen. nov., sp.nov. and Haliangium tepidum sp. nov.: Novel moderately halophilic myxobacteria isolated from coastal saline environments. J Gen Appl Microbiol 48:109–115

    Article  PubMed  CAS  Google Scholar 

  • Gross H (2009) Genomic mining—a concept for the discovery of new bioactive natural products. Curr Opin Drug Discov Devel 12:207–219

    PubMed  CAS  Google Scholar 

  • Hamad B (2010) The antibiotics market. Nat Rev Drug Discov. 9:675–676

    Article  PubMed  CAS  Google Scholar 

  • Hughes CC, Fenical W (2010) Antibacterials from the sea. Chem Eur J 16:12512–12525

    Article  PubMed  CAS  Google Scholar 

  • Iizuka T, Jojima Y, Fudou R, Hiraishi A, Ahn JW, Yamanaka S (2003a) Plesiocystis pacifica gen. nov., sp. nov., a marine myxobacterium that contains dihydrogenated menaquinone, isolated from the Pacific coasts of Japan. Int J Syst Evol Microbiol 53:189–195

    Article  PubMed  CAS  Google Scholar 

  • Iizuka T, Jojima Y, Fudou R, Tokura M, Hiraishi A, Yamanaka S (2003b) Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan. Syst Appl Microbiol 26:189–196

    Article  PubMed  Google Scholar 

  • Irschik H, Jansen R, Höfle G, Gerth K, Reichenbach H (1985) On antibiotics from gliding bacteria. The corallopyronins, new inhibitors of bacterial RNA-synthesis from myxobacteria. J Antibiot (Tokyo) 38:145–152

    Article  CAS  Google Scholar 

  • Irschik H, Schummer D, Höfle G, Reichenbach H, Steinmetz H, Jansen R (2007) Etnangien, a macrolide-polyene antibiotic from Sorangium cellulosum that inhibits nucleic acid polymerase. J Nat Prod 70:1060–1063

    Article  PubMed  CAS  Google Scholar 

  • Jansen R, Irschnik H, Reichenbach H, Höfle G (1985) Corallopyronin A, corallopyronin B, and corallopyronin C—3 novel antibiotics from Corallococcus coralloides. Liebigs Ann Chem 4:822–826

    Article  Google Scholar 

  • Kusebauch B, Busch B, Scherlach K, Roth M, Hertweck C (2010) Functionally distinct modules operate two consecutive α, β→β, γ double-bond shifts in the rhizoxin polyketide assembly line. Angew Chem Int Ed Engl 49:1460–1464

    Article  PubMed  CAS  Google Scholar 

  • Li YZ, Hu W, Zhang YQ, Qiu ZJ, Zhang Y, Wu BH (2002) A simple method to isolate salt-tolerant myxobacteria from marine samples. J Microbiol Methods 50:205–209

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Ashforth E, Ren B, Song F, Dai H, Liu M, Wang J, Xie Q, Zhang L (2010) Bioprospecting microbial natural product libraries from the marine environment for drug discovery. J Antibiot (Tokyo) 63:415–422

    Article  CAS  Google Scholar 

  • Menche D, Arikan F, Perlova O, Horstmann N, Ahlbrecht W, Wenzel SC, Jansen R, Irschik H, Müller R (2008) Stereochemical determination and complex biosynthetic assembly of etnangien, a highly potent RNA polymerase inhibitor from the myxobacterium Sorangium cellulosum. J Am Chem Soc 130:14234–14243

    Article  PubMed  CAS  Google Scholar 

  • Moldenhauer J, Götz DC, Albert CR, Bischof SK, Schneider K, Süssmuth RD, Engeser M, Gross H, Bringmann G, Piel J (2010) The final steps of bacillaene biosynthesis in Bacillus amyloliquefaciens FZB42: direct evidence for beta, gamma dehydration by a trans-acyltransferase polyketide synthase. Angew Chem Int Ed Engl 49:1465–1467

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay J, Das K, Ismail S, Koppstein D, Jang M, Hudson B, Sarafianos S, Tuske S, Patel J, Jansen R, Irschik H, Arnold E, Ebright RH (2008) The RNA polymerase “switch region” is target for inhibitors. Cell 135:295–307

    Article  PubMed  CAS  Google Scholar 

  • Mullane KM, Gorbach S (2011) Fidaxomicin: first-in-class macrocyclic antibiotic. Expert Rev Anti Infect Ther 9:767–777

    Article  PubMed  CAS  Google Scholar 

  • Nett M, König GM (2007) The chemistry of gliding bacteria. Nat Prod Rep 24:1245–1261

    Article  PubMed  CAS  Google Scholar 

  • O’Neill A, Oliva B, Storey C, Hoyle A, Fishwick C, Chopra I (2000) RNA polymerase inhibitors with activity against rifampin-resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother 44:3163–3166

    Article  PubMed  Google Scholar 

  • Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40

    Article  PubMed  CAS  Google Scholar 

  • Piel J (2010) Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 27:996–1047

    Article  PubMed  CAS  Google Scholar 

  • Projan SJ (2003) Why is big pharma getting out of antibacterial drug discovery? Curr Opin Microbiol 6:427–430

    Article  PubMed  Google Scholar 

  • Reichenbach H (1993) Biology of myxobacteria: ecology and taxonomy. In: Dworkin M, Kaiser D (eds) Myxobacteria II. American Society for Microbiology, Washington, DC, pp 13–62

    Google Scholar 

  • Reichenbach H (2001) Myxobacteria, producers of novel bioactive substances. J Ind Microbiol Biotechnol 27:149–156

    Article  PubMed  CAS  Google Scholar 

  • Schäberle TF, Goralski E, Neu E, Erol Ö, Hölzl G, Dörmann P, Bierbaum G, König GM (2010) Marine myxobacteria as a source of antibiotics—Comparison of the physiology, polyketide-type genes and antibiotic production of three new isolates of Enhygromyxa salina. Marine Drugs 8:2466–2479

    Article  PubMed  Google Scholar 

  • Schiefer A, Schmitz A, Schäberle TF, Specht S, Lämmer C, Johnston KL, Vassylyev DG, König GM, Hoerauf A, Pfarr K (2012) Corallopyronin A specifically targets and depletes essential obligate Wolbachia endobacteria from filarial nematodes in vivo. J Infect Dis (in press)

  • Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Bekel T, Beyer S, Bode E et al (2007) Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotechnol 25:1281–1289

    Article  PubMed  CAS  Google Scholar 

  • Singh SB, Young K (2010) New antibiotic structures from fermentations. Expert Opin Ther Pat 20:1359–1371

    Article  PubMed  CAS  Google Scholar 

  • Wenzel SC, Müller R (2009) The biosynthetic potential of myxobacteria and their impact in drug discovery. Curr Opin Drug Discov Dev 12:220–230

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till F. Schäberle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, A., Felder, S., Höver, T. et al. Antibiotics from gliding bacteria. Phytochem Rev 12, 507–516 (2013). https://doi.org/10.1007/s11101-012-9224-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-012-9224-x

Keywords

Navigation