Skip to main content
Log in

Bioavailability of hydroxycinnamates: a brief review of in vivo and in vitro studies

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Hydroxycinnamates including p-coumaric acid, caffeic acid, ferulic acid, sinapic acid, and their esterified/etherified conjugates such as chlorogenic acids are abundant in cereals, coffee, fruit and vegetables. Studies have shown their potential in the prevention of chronic diseases such as cardiovascular disease and cancer. The impact of these dietary hydroxycinnamates on health depends on their bioavailability. In this article, in vivo and in vitro studies pertaining to bioavailability of hydroxycinnamates are reviewed and discussed. The chemical structures, existing forms, and/or doses of hydroxycinnamates may affect their metabolic fate. Limited studies suggest that the relative bioavailability of hydroxycinnamates may be in the following order: chlorogenic acid < rosmarinic acid < caffeic acid < ferulic acid < p-coumaric acid. Bound hydroxycinnamates generally have lower bioavailability than their monomer counterparts. Further pharmacokinetic and phamacodynamic studies are required to characterize the metabolism of hydroxycinnamates and their potential health impact in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

HC:

Hydroxycinnamates

PA:

p-Coumaric acid

CA:

Caffeic acid

FA:

Ferulic acid

SA:

Sinapic acid

m-HPPA:

m-Hydroxyphenylpropionic acid

References

  • Adam A, Crespy V, Levrat-Verny MA, Leenhardt F, Leuillet M, Demigne C, Remesy C (2002) The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J Nutr 132(7):1962–1968

    CAS  PubMed  Google Scholar 

  • Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agric Food Chem 50(21):6182–6187

    CAS  PubMed  Google Scholar 

  • Anderson JW (2004) Whole grains and coronary heart disease: the whole kernel of truth. Am J Clin Nutr 80(6):1459–1460

    CAS  PubMed  Google Scholar 

  • Andreasen MF, Kroon PA, Williamson G, Garcia-Conesa MT (2001a) Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals. J Agric Food Chem 49(11):5679–5684

    CAS  PubMed  Google Scholar 

  • Andreasen MF, Kroon PA, Williamson G, Garcia-Conesa MT (2001b) Intestinal release and uptake of phenolic antioxidant diferulic acids. Free Radic Biol Med 31(3):304–314

    CAS  PubMed  Google Scholar 

  • Andreasen MF, Landbo AK, Christensen LP, Hansen A, Meyer AS (2001c) Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins. J Agric Food Chem 49(8):4090–4096

    CAS  PubMed  Google Scholar 

  • Ardiansyah, Ohsaki Y, Shirakawa H, Koseki T, Komai M (2008) Novel effects of a single administration of ferulic acid on the regulation of blood pressure and the hepatic lipid metabolic profile in stroke-prone spontaneously hypertensive rats. J Agric Food Chem 56(8):2825–2830

    CAS  PubMed  Google Scholar 

  • Azuma K, Ippoushi K, Nakayama M, Ito H, Higashio H, Terao J (2000) Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J Agric Food Chem 48(11):5496–5500

    CAS  PubMed  Google Scholar 

  • Baba S, Osakabe N, Natsume M, Terao J (2004a) Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid. Life Sci 75(2):165–178

    CAS  PubMed  Google Scholar 

  • Baba S, Osakabe N, Natsume M, Terao J (2004b) Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid. Life Sci 75(2):165–178

    CAS  PubMed  Google Scholar 

  • Balasubashini MS, Rukkumani R, Viswanathan P, Menon VP (2004) Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytother Res 18(4):310–314

    CAS  PubMed  Google Scholar 

  • Bassoli BK, Cassolla P, Borba-Murad GR, Constantin J, Salgueiro-Pagadigorria CL, Bazotte RB, da Silva RS, de Souza HM (2007) Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochem Funct 26:320–328

    Google Scholar 

  • Booth AN, Emerson OH, Jones FT, Deeds F (1957) Urinary metabolites of caffeic and chlorogenic acids. J Biol Chem 229(1):51–59

    CAS  PubMed  Google Scholar 

  • Borek C (2004) Dietary antioxidants and human cancer. Integr Cancer Ther 3(4):333–341

    CAS  PubMed  Google Scholar 

  • Bourne LC, Rice-Evans CA (1997) The effect of the phenolic antioxidant ferulic acid on the oxidation of low density lipoprotein depends on the pro-oxidant used. Free Radic Res 27(3):337–344

    CAS  PubMed  Google Scholar 

  • Bourne LC, Rice-Evans C (1998) Bioavailability of ferulic acid. Biochem Biophys Res Commun 253(2):222–227

    CAS  PubMed  Google Scholar 

  • Castelluccio C, Bolwell GP, Gerrish C, Rice-Evans C (1996) Differential distribution of ferulic acid to the major plasma constituents in relation to its potential as an antioxidant. Biochem J 316(Pt 2):691–694

    CAS  PubMed  Google Scholar 

  • Chang MX, Xu LY, Tao JS, Feng Y (1993). Metabolism and pharmacokinetics of ferulic acid in rats. Zhongguo Zhong Yao Za Zhi 18(5):300–302, 319

    Google Scholar 

  • Chanliaud E, Roger P, Saulnier L, Thibault JF (1996) Static and dynamic light scattering studies of heteroxylans from maize bran in aqueous solution. Carbohydr Polym 31(1–2):41–46

    CAS  Google Scholar 

  • Chesson A, Provan GJ, Russell WR, Scobbie L, Richardson AJ, Stewart C (1999) Hydroxycinnamic acids in the digestive tract of livestock and humans. J Sci Food Agric 79(3):373–378

    CAS  Google Scholar 

  • Choudhury R, Srai SK, Debnam E, Rice-Evans CA (1999) Urinary excretion of hydroxycinnamates and flavonoids after oral and intravenous administration. Free Radic Biol Med 27(3–4):278–286

    CAS  PubMed  Google Scholar 

  • Clifford MN (1999) Chlorogenic acids and other cinnamates—nature, occurrence and dietary burden. J Sci Food Agric 79(3):362–372

    CAS  Google Scholar 

  • Clifford MN (2004) Diet-derived phenols in plasma and tissues and their implications for health. Planta Med 12:1103–1114

    Google Scholar 

  • Clifford MN, Brown JE (2006) Dietary flavonoids and health—broadening the perspective. In: Andersen O, Markham KR (eds) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton FL, pp 320–370

    Google Scholar 

  • dos Santos MD, Martins PR, dos Santos PA, Bortocan R, Iamamoto Y, Lopes NP (2005) Oxidative metabolism of 5-O-caffeoylquinic acid (chlorogenic acid), a bioactive natural product, by metalloporphyrin and rat liver mitochondria. Eur J Pharm Sci 26(1):62–70

    CAS  PubMed  Google Scholar 

  • Dupas C, Baglieri AM, Ordonaud C, Tome D, Maillard MN (2006) Chlorogenic acid is poorly absorbed, independently of the food matrix: a caco-2 cells and rat chronic absorption study. Mol Nutr Food Res 50(11):1053–1060

    CAS  PubMed  Google Scholar 

  • Erdemgil FZ, Sanli S, Sanli N, Özkan G, Barbosa J, Guiteras J, Beltrán JL (2007) Determination of pK a values of some hydroxylated benzoic acids in methanol—water binary mixtures by LC methodology and potentiometry. Talanta 72:489–496

    CAS  PubMed  Google Scholar 

  • Farah A, Monteiro M, Donangelo CM, Lafay S (2008) Chlorogenic acids from green coffee extract are highly bioavailable in humans. J Nutr 138(12):2309–2315

    CAS  PubMed  Google Scholar 

  • Ferguson LR, Lim IF, Pearson AE, Ralph J, Harris PJ (2003) Bacterial antimutagenesis by hydroxycinnamic acids from plant cell walls. Mutat Res 542(1–2):49–58

    CAS  PubMed  Google Scholar 

  • Garrait G, Jarrige JF, Blanquet S, Beyssac E, Cardot JM, Alric M (2006) Gastrointestinal absorption and urinary excretion of trans-cinnamic and p-coumaric acids in rats. J Agric Food Chem 54(8):2944–2950

    CAS  PubMed  Google Scholar 

  • Gonthier MP, Verny MA, Besson C, Remesy C, Scalbert A (2003) Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr 133(6):1853–1859

    CAS  PubMed  Google Scholar 

  • Gonthier MP, Remesy C, Scalbert A, Cheynier V, Souquet JM, Poutanen K, Aura AM (2006) Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomed Pharmacother 60(9):536–540

    CAS  PubMed  Google Scholar 

  • Graf E (1992) Antioxidant potential of ferulic acid. Free Radic Biol Med 13(4):435–448

    CAS  PubMed  Google Scholar 

  • Griffiths LA (1969) Metabolism of sinapic acid and related compounds in the rat. Biochem J 113(4):603–609

    CAS  PubMed  Google Scholar 

  • Gumbinger HG, Vahlensieck U, Winterhoff H (1993) Metabolism of caffeic acid in the isolated perfused rat liver. Planta Med 59(6):491–493

    CAS  PubMed  Google Scholar 

  • Herrmann K (1989) Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit Rev Food Sci Nutr 28(4):315–347

    CAS  PubMed  Google Scholar 

  • Huang MT, Smart RC, Wong CQ, Conney AH (1988) Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 48(21):5941–5946

    CAS  PubMed  Google Scholar 

  • Itagaki S, Kobayashi Y, Otsuka Y, Kubo S, Kobayashi M, Hirano T, Iseki K (2005) Food-drug interaction between ferulic acid and nateglinide involving the fluorescein/H+ cotransport system. J Agric Food Chem 53(7):2499–2502

    CAS  PubMed  Google Scholar 

  • Ito H, Gonthier MP, Manach C, Morand C, Mennen L, Remesy C, Scalbert A (2005) Polyphenol levels in human urine after intake of six different polyphenol-rich beverages. Br J Nutr 94(4):500–509

    CAS  PubMed  Google Scholar 

  • Jacobs DR Jr, Gallaher DD (2004) Whole grain intake and cardiovascular disease: a review. Curr Atheroscler Rep 6(6):415–423

    PubMed  Google Scholar 

  • Jacobson EA, Newmark H, Baptista J, Bruce WR (1983) A preliminary investigation of the metabolism of dietary phenolics in humans. Nutr Rep Int 28(6):1409–1417

    CAS  Google Scholar 

  • Johnston KL, Clifford MN, Morgan LM (2002) Possible role for apple juice phenolic compounds in the acute modification of glucose tolerance and gastrointestinal hormone secretion in humans. J Sci Food Agric 82:1800–1805

    CAS  Google Scholar 

  • Johnston KL, Clifford MN, Morgan LM (2003) Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 78:728–733

    CAS  PubMed  Google Scholar 

  • Johnston K, Sharp P, Clifford MN, Morgan L (2005) Dietary polyphenols decrease glucose uptake by human intestinal caco-2 cells. FEBS Lett 579:1653–1657

    CAS  PubMed  Google Scholar 

  • Kern SM, Bennett RN, Mellon FA, Kroon PA, Garcia-Conesa MT (2003a) Absorption of hydroxycinnamates in humans after high-bran cereal consumption. J Agric Food Chem 51(20):6050–6055

    CAS  PubMed  Google Scholar 

  • Kern SM, Bennett RN, Needs PW, Mellon FA, Kroon PA, Garcia-Conesa MT (2003b) Characterization of metabolites of hydroxycinnamates in the in vitro model of human small intestinal epithelium caco-2 cells. J Agric Food Chem 51(27):7884–7891

    CAS  PubMed  Google Scholar 

  • Konishi Y, Kobayashi S (2004) Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal caco-2 cell monolayers. J Agric Food Chem 52(9):2518–2526

    CAS  PubMed  Google Scholar 

  • Konishi Y, Kobayashi S (2005) Transepithelial transport of rosmarinic acid in intestinal caco-2 cell monolayers. Biosci Biotechnol Biochem 69(3):583–591

    CAS  PubMed  Google Scholar 

  • Konishi Y, Shimizu M (2003) Transepithelial transport of ferulic acid by monocarboxylic acid transporter in caco-2 cell monolayers. Biosci Biotechnol Biochem 67(4):856–862

    CAS  PubMed  Google Scholar 

  • Konishi Y, Kobayashi S, Shimizu M (2003) Transepithelial transport of p-coumaric acid and gallic acid in caco-2 cell monolayers. Biosci Biotechnol Biochem 67(11):2317–2324

    CAS  PubMed  Google Scholar 

  • Konishi Y, Hitomi Y, Yoshioka E (2004) Intestinal absorption of p-coumaric and gallic acids in rats after oral administration. J Agric Food Chem 52(9):2527–2532

    CAS  PubMed  Google Scholar 

  • Konishi Y, Hitomi Y, Yoshida M, Yoshioka E (2005) Pharmacokinetic study of caffeic and rosmarinic acids in rats after oral administration. J Agric Food Chem 53(12):4740–4746

    CAS  PubMed  Google Scholar 

  • Konishi Y, Zhao ZH, Shimizu M (2006) Phenolic acids are absorbed from the rat stomach with different absorption rates. J Agric Food Chem 54(20):7539–7543

    CAS  PubMed  Google Scholar 

  • Kroon PA, Faulds CB, Ryden P, Robertson JA, Williamson G (1997) Release of covalently bound ferulic acid from fiber in the human colon. J Agric Food Chem 45(3):661–667

    CAS  Google Scholar 

  • Kroon PA, Clifford MN, Crozier A, Day AJ, Donovan JL, Manach C, Williamson G (2004) How should we assess the effects of exposure to dietary polyphenols in vitro? Am J Clin Nutr 80:15–21

    CAS  PubMed  Google Scholar 

  • Lafay S, Gil-Izquierdo A, Manach C, Morand C, Besson C, Scalbert A (2006a) Chlorogenic acid is absorbed in its intact form in the stomach of rats. J Nutr 136(5):1192–1197

    CAS  PubMed  Google Scholar 

  • Lafay S, Morand C, Manach C, Besson C, Scalbert A (2006b) Absorption and metabolism of caffeic acid and chlorogenic acid in the small intestine of rats. Br J Nutr 96(1):39–46

    CAS  PubMed  Google Scholar 

  • Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources, bioavailability. Am J Clin Nutr 79:727–747

    CAS  PubMed  Google Scholar 

  • Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242S

    CAS  PubMed  Google Scholar 

  • Mandal S, Barik B, Mallick C, De D, Ghosh D (2008) Therapeutic effect of ferulic acid, an ethereal fraction of ethanolic extract of seed of Syzygium cumini against streptozotocin-induced diabetes in male rat. Methods Find Exp Clin Pharmacol 30(2):121–128

    CAS  PubMed  Google Scholar 

  • Mateos R, Goya L, Bravo L (2006) Uptake and metabolism of hydroxycinnamic acids (chlorogenic, caffeic, and ferulic acids) by HepG2 cells as a model of the human liver. J Agric Food Chem 54(23):8724–8732

    CAS  PubMed  Google Scholar 

  • Mattila P, Hellstrom J (2007) Phenolic acids in potatoes, vegetables, and some of their products. J Food Compos Anal 20(3–4):152–160

    CAS  Google Scholar 

  • Mattila P, Pihlava JM, Hellstrom J (2005) Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J Agric Food Chem 53(21):8290–8295

    CAS  PubMed  Google Scholar 

  • Maurya DK, Nair CK (2006) Preferential radioprotection to DNA of normal tissues by ferulic acid under ex vivo and in vivo conditions in tumor bearing mice. Mol Cell Biochem 285(1–2):181–190

    CAS  PubMed  Google Scholar 

  • McCarty MF (2005) A chlorogenic acid-induced increase in GLP-1 production may mediate the impact of heavy coffee consumption on diabetes risk. Med Hypotheses 64(4):848–853

    CAS  PubMed  Google Scholar 

  • Moridani MY, Scobie H, O’Brien PJ (2002) Metabolism of caffeic acid by isolated rat hepatocytes and subcellular fractions. Toxicol Lett 133(2–3):141–151

    CAS  PubMed  Google Scholar 

  • Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Aggarwal N, Wilson RS, Scherr PA (2002) Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. JAMA 287(24):3230–3237

    CAS  PubMed  Google Scholar 

  • Nardini M, Daquino M, Tomassi G, Gentili V, Difelice M, Scaccini C (1995) Inhibition of human low-density-lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid-derivatives. Free Radic Biol Med 19(5):541–552

    CAS  PubMed  Google Scholar 

  • Nardini M, Cirillo E, Natella F, Scaccini C (2002) Absorption of phenolic acids in humans after coffee consumption. J Agric Food Chem 50(20):5735–5741

    CAS  PubMed  Google Scholar 

  • Ohnishi M, Matuo T, Tsuno T, Hosoda A, Nomura E, Taniguchi H, Sasaki H, Morishita H (2004) Antioxidant activity and hypoglycemic effect of ferulic acid in STZ-induced diabetic mice and KK-Ay mice. Biofactors 21(1–4):315–319

    CAS  PubMed  Google Scholar 

  • Olthof MR, Hollman PC, Katan MB (2001) Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 131(1):66–71

    CAS  PubMed  Google Scholar 

  • Olthof MR, Hollman PC, Buijsman MN, van Amelsvoort JM, Katan MB (2003) Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. J Nutr 133(6):1806–1814

    CAS  PubMed  Google Scholar 

  • Ono K, Hirohata M, Yamada M (2005) Ferulic acid destabilizes preformed beta-amyloid fibrils in vitro. Biochem Biophys Res Commun 336(2):444–449

    CAS  PubMed  Google Scholar 

  • Peppercorn MA, Goldman P (1972) Caffeic acid metabolism by gnotobiotic rats and their intestinal bacteria. Proc Natl Acad Sci U S A 69(6):1413–1415

    CAS  PubMed  Google Scholar 

  • Poquet L, Clifford MN, Williamson G (2008a) Transport and metabolism of ferulic acid through the colonic epithelium. Drug Metab Dispos 36:190–197

    CAS  PubMed  Google Scholar 

  • Poquet L, Clifford MN, Williamson G (2008b) Investigation of the metabolic fate of dihydrocaffeic acid. Biochem Pharmacol 75(5):1218–1229

    CAS  PubMed  Google Scholar 

  • Rechner AR, Spencer JPE, Kuhnle G, Hahn U, Rice-Evans CA (2001) Novel biomarkers of the metabolism of caffeic acid derivatives in vivo. Free Radic Biol Med 30(11):1213–1222

    CAS  PubMed  Google Scholar 

  • Rechner AR, Kuhnle G, Bremner P, Hubbard GP, Moore KP, Rice-Evans CA (2002) The metabolic fate of dietary polyphenols in humans. Free Radic Biol Med 33(2):220–235

    CAS  PubMed  Google Scholar 

  • Rondini L, Peyrat-Maillard MN, Marsset-Baglieri A, Berset C (2002) Sulfated ferulic acid is the main in vivo metabolite found after short-term ingestion of free ferulic acid in rats. J Agric Food Chem 50(10):3037–3041

    CAS  PubMed  Google Scholar 

  • Scheline RR (1968) Metabolism of phenolic acids by the rat intestinal microflora. Acta Pharmacol Toxicol (Copenh) 26(2):189–205

    CAS  Google Scholar 

  • Scheline RR, Midtvedt T (1970) Absence of Dehydroxylation of caffeic acid in germ-free rats. Experientia 26(10):1068–1069

    CAS  PubMed  Google Scholar 

  • Spencer JP, Chowrimootoo G, Choudhury R, Debnam ES, Srai SK, Rice-Evans C (1999) The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett 458(2):224–230

    CAS  PubMed  Google Scholar 

  • Suzuki A, Kagawa D, Fujii A, Ochiai R, Tokimitsu I, Saito I (2002) Short- and long-term effects of ferulic acid on blood pressure in spontaneously hypertensive rats. Am J Hypertens 15(4 Pt 1):351–357

    CAS  PubMed  Google Scholar 

  • Suzuki A, Yamamoto M, Jokura H, Fujii A, Tokimitsu I, Hase T, Saito I (2007) Ferulic acid restores endothelium-dependent vasodilation in aortas of spontaneously hypertensive rats. Am J Hypertens 20:508–513

    CAS  PubMed  Google Scholar 

  • Suzuki A, Fujii A, Jokura H, Tokimitsu I, Hase T, Saito I (2008) Hydroxyhydroquinone interferes with the chlorogenic acid-induced restoration of endothelial function in spontaneously hypertensive rats. Am J Hypertens 21(1):23–27

    CAS  PubMed  Google Scholar 

  • Tanaka T, Kojima T, Kawamori T, Wang AJ, Suzui M, Okamoto K, Mori H (1993) Inhibition of 4-nitroquinoline-1-oxide-induced rat tongue carcinogenesis by the naturally-occurring plant phenolics caffeic, ellagic, chlorogenic and ferulic acids. Carcinogenesis 14(7):1321–1325

    CAS  PubMed  Google Scholar 

  • Teuchy H, Van Sumere CF (1971) The metabolism of (1–14 C) phenylalanine, (3–14 C) cinnamic acid and (2–14 C) ferulic acid in the rat. Arch Int Physiol Biochim 79(3):589–618

    CAS  PubMed  Google Scholar 

  • Virgili F, Pagana G, Bourne L, Rimbach G, Natella F, Rice-Evans C, Packer L (2000) Ferulic acid excretion as a marker of consumption of a French maritime pine (Pinus maritima) bark extract. Free Radic Biol Med 28(8):1249–1256

    CAS  PubMed  Google Scholar 

  • Wang BH, Ou-Yang JP (2005) Pharmacological actions of sodium ferulate in cardiovascular system. Cardiovasc Drug Rev 23(2):161–172

    PubMed  Google Scholar 

  • Wang B, Ouyang J, Liu Y, Yang J, Wei L, Li K, Yang H (2004) Sodium ferulate inhibits atherosclerogenesis in hyperlipidemia rabbits. J Cardiovasc Pharmacol 43(4):549–554

    CAS  PubMed  Google Scholar 

  • Williamson G, Manach C (2005) Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 81(1 Suppl):243S–255S

    CAS  PubMed  Google Scholar 

  • Wittemer SM, Ploch M, Windeck T, Muller SC, Drewelow B, Derendorf H, Veit M (2005) Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of Artichoke leaf extracts in humans. Phytomedicine 12(1–2):28–38

    CAS  PubMed  Google Scholar 

  • Wolffram S, Weber T, Grenacher B, Scharrer E (1995) A Na(+)-dependent mechanism is involved in mucosal uptake of cinnamic acid across the jejunal brush border in rats. J Nutr 125(5):1300–1308

    CAS  PubMed  Google Scholar 

  • Yan JJ, Cho JY, Kim HS, Kim KL, Jung JS, Huh SO, Suh HW, Kim YH, Song DK (2001) Protection against beta-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol 133(1):89–96

    CAS  PubMed  Google Scholar 

  • Yang B, Meng Z, Dong J, Yan L, Zou L, Tang Z, Dou G (2005) Metabolic profile of 1, 5-dicaffeoylquinic acid in rats, an in vivo and in vitro study. Drug Metab Dispos 33:930–936

    CAS  PubMed  Google Scholar 

  • Yang B, Meng ZY, Yan LP, Dong JX, Zou LB, Tang ZM, Dou GF (2006) Pharmacokinetics and metabolism of 1, 5-dicaffeoylquinic acid in rats following a single intravenous administration. J Pharm Biomed Anal 40:417–422

    CAS  PubMed  Google Scholar 

  • Yang C, Tian Y, Zhang ZJ, Xu FG, Chen Y (2007) High-performance liquid chromatography-electrospray ionization mass spectrometry determination of sodium ferulate in human plasma. J Pharm Biomed Anal 43(3):945–950

    CAS  PubMed  Google Scholar 

  • Zhao Z, Moghadasian MH (2008) Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem 109(4):691–702

    CAS  Google Scholar 

  • Zhao Z, Egashira Y, Sanada H (2003a) Digestion and absorption of ferulic acid sugar esters in rat gastrointestinal tract. J Agric Food Chem 51(18):5534–5539

    CAS  PubMed  Google Scholar 

  • Zhao Z, Egashira Y, Sanada H (2003b) Ferulic acid sugar esters are recovered in rat plasma and urine mainly as the sulfoglucuronide of ferulic acid. J Nutr 133(5):1355–1361

    CAS  PubMed  Google Scholar 

  • Zhao Z, Egashira Y, Sanada H (2004) Ferulic acid is quickly absorbed from rat stomach as the free form and then conjugated mainly in liver. J Nutr 134(11):3083–3088

    CAS  PubMed  Google Scholar 

  • Zhao Z, Egashira Y, Sanada H (2005) Phenolic antioxidants richly contained in corn bran are slightly bioavailable in rats. J Agric Food Chem 53(12):5030–5035

    CAS  PubMed  Google Scholar 

  • Zhong S, Liu J, Ren X, Zhang J, Zhou S, Xu XP (2008) Pharmacokinetics and excretion of chlorogenic acid in beagle dogs. Pharmazie 63(7):520–524

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

ZZ is a recipient of Manitoba Health Research Council (MHRC) post-doctoral fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed H. Moghadasian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Z., Moghadasian, M.H. Bioavailability of hydroxycinnamates: a brief review of in vivo and in vitro studies. Phytochem Rev 9, 133–145 (2010). https://doi.org/10.1007/s11101-009-9145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-009-9145-5

Keywords

Navigation