Skip to main content
Log in

Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

This review provides an overview of the mechanisms evolved by arbuscular mycorrhizal (AM) fungi to survive in Cu-contaminated environments. These mechanisms include avoidance strategies to restrict entry of toxic levels of Cu into their cytoplasm, intracellular complexation of the metal in the cytosol and compartmentalization strategies. Through the activity of specific metal transporters, the excess of Cu is translocated to subcellular compartments, mainly vacuoles, where it would cause less damage. At the level of the fungal colony, AM fungi have also evolved compartmentalization strategies based on the accumulation of Cu into specific fungal structures, such as extraradical spores and intraradical vesicles. In addition to the avoidance and compartmentalization strategies, AM fungi have also mechanisms to combat the Cu-generated oxidative stress or to repair the damage induced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AM:

Arbuscular mycorrhiza

EDXS:

Energy-dispersive X-ray spectroscopy

GRSP:

Glomalin-related soil proteins

GSH:

Glutathione

GST:

Glutathione S-tranferase

H2DCF-DA:

2′,7′-Dichlorodihydrofluorescein diacetate

MTs:

Metallothioneins

ROS:

Reactive oxygen species

SODs:

Superoxide dismutases

References

  • Bååth E (1989) Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil Pollut 47:335–379. doi:10.1007/BF00279331

    Article  Google Scholar 

  • Bago B, Cano C, Azcón-Aguilar C et al (2004) Differential morphogenesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous culture media. Mycologia 96:452–462. doi:10.2307/3762165

    Article  Google Scholar 

  • Barea JM (1991) Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. In: Stewart BA (ed) Advances in soil science, vol 7. Springer, New York, pp 1–40

    Google Scholar 

  • Benabdellah K, Valderas A, Azcón-Aguilar C, et al (2007) Identification of the first Glomeromycotan P1b-ATPase. In: Abstracts of the 14th international workshop on plant membrane biology, Universidad Politécnica de Valencia, Valencia, Spain, 26–20 June 2007

  • Benabdellah K, Merlos MA, Azcón-Aguilar C et al (2009) GintGRX1, the first characterized glomeromycotan glutaredoxin, is a multifunctional enzyme that responds to oxidative stress. Fungal Genet Biol 46:94–103. doi:10.1016/j.fgb.2008.09.013

    Article  PubMed  CAS  Google Scholar 

  • Cornejo P, Meiera S, Borie G et al (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160. doi:10.1016/j.scitotenv.2008.07.045

    Article  PubMed  CAS  Google Scholar 

  • Driver JD, Holben WE, Rillig MC (2005) Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol Biochem 37:101–106. doi:10.1016/j.soilbio.2004.06.011

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC, Clark RB (2002) Micronutrients in crop production. Adv Agron 77:185–268. doi:10.1016/S0065-2113(02)77015-6

    Article  CAS  Google Scholar 

  • Flemming CA, Trevors TJ (1989) Copper toxicity and chemistry in the environment: a review. Water Air Soil Pollut 44:143–158. doi:10.1007/BF00228784

    Article  CAS  Google Scholar 

  • Fomina M, Ritz K, Gadd GM (2003) Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycol Res 107:861–871. doi:10.1017/S095375620300786X

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112. doi:10.1146/annurev.bi.64.070195.000525

    Article  PubMed  CAS  Google Scholar 

  • Gadd G (1990) Fungi and yeasts for metal accumulation. In: Ehrlich HL, Brierley C (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 249–275

    Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49. doi:10.1016/j.mycres.2006.12.001

    Article  PubMed  CAS  Google Scholar 

  • Gadkar V, Rillig MC (2006) The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol Lett 263:93–101. doi:10.1111/j.1574-6968.2006.00412.x

    Article  PubMed  CAS  Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122. doi:10.1007/s00425-006-0225-0

    Article  PubMed  Google Scholar 

  • González-Chávez MC, Carrillo-González R, Wright SF et al (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323. doi:10.1016/j.envpol.2004.01.004

    Article  PubMed  Google Scholar 

  • González-Guerrero M (2005) Estudio de los mecanismos implicados en la homeostasis de metales pesados en el hongo formador de micorrizas arbusculares Glomus intraradices. Dissertation, University of Granada

  • González-Guerrero M, Benabdellah K, Valderas A, et al. (2007a) GintABC1 is involved in Cu and Cd homeostasis in the arbuscular mycorrhizal fungus Glomus intraradices. In: Abstracts of the 14th international workshop on plant membrane biology, Universidad Politécnica de Valencia, Valencia, Spain, 26–30 June 2007

  • González-Guerrero M, Cano C, Azcón-Aguilar C et al (2007b) GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17:327–335. doi:10.1007/s00572-007-0108-7

    Article  PubMed  Google Scholar 

  • González-Guerrero M, Melville LH, Ferrol N et al (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54:103–110. doi:10.1139/W07-119

    Article  PubMed  Google Scholar 

  • González-Guerrero M, Benabdellah K, Ferrol N et al (2009) Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas: functional processes and ecological impact. Springer, Berlin, pp 107–122

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clanderon Press, Oxford

    Google Scholar 

  • Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951

    PubMed  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146. doi:10.1016/j.phytochem.2006.09.023

    Article  PubMed  CAS  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234. doi:10.1023/A:1026565701391

    Article  CAS  Google Scholar 

  • Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4:176–185. doi:10.1038/nchembio.72

    Article  PubMed  CAS  Google Scholar 

  • Lanfranco L, Bolchi A, Ros EC et al (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67. doi:10.1104/pp.003525

    Article  PubMed  CAS  Google Scholar 

  • Lanfranco L, Novero M, Bonfante P (2005) The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiol 137:1319–1330. doi:10.1104/pp.104.050435

    Article  PubMed  CAS  Google Scholar 

  • Leyval C, Joner EJ, del Val C (2002) Potential of arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K et al (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 175–186

    Google Scholar 

  • Linder MC, Goode CA (1991) Biochemistry of copper. Chapter 9. Springer, New York, pp 331–366

    Google Scholar 

  • Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265. doi:10.1017/S0953756203008608

    Article  PubMed  CAS  Google Scholar 

  • Orlowska E, Mesjasz-Przybylowicz J, Przybylowicz W et al (2008) Nuclear microprobe studies of elemental distribution in mycorrhizal and non-mycorrhizal roots of Ni-hyperaccumulator Berkheya coddii. XRay Spectrom 37:129–132. doi:10.1002/xrs.1034

    Article  CAS  Google Scholar 

  • Ouziad F, Hildebrandt U, Schmelzer E et al (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649. doi:10.1016/j.jplph.2004.09.014

    Article  PubMed  CAS  Google Scholar 

  • Pawlowska TE, Charvat I (2004) Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649. doi:10.1128/AEM.70.11.6643-6649.2004

    Article  PubMed  CAS  Google Scholar 

  • Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180. doi:10.1016/S1367-5931(02)00298-3

    Article  PubMed  CAS  Google Scholar 

  • Purin S, Rillig MC (2007) The arbuscular mycorrhizal fungal protein glomalin: limitations, progress, and a new hypothesis for its function. Pedobiologia (Jena) 51:123–130. doi:10.1016/j.pedobi.2007.03.002

    Article  CAS  Google Scholar 

  • Purin S, Rillig MC (2008) Immuno-cytolocalization of glomalin in the mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol Biochem 40:1000–1003. doi:10.1016/j.soilbio.2007.11.010

    Article  CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, New York

    Google Scholar 

  • Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol J 17:97–124. doi:10.1080/01490450050023791

    Article  CAS  Google Scholar 

  • Stommel M, Mann P, Franken P (2001) EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrhiza 10:281–285. doi:10.1007/s005720000090

    Article  CAS  Google Scholar 

  • Sudová R, Doubková P, Vosátka M (2008) Mycorrhizal association of Agrostis capillaris and Glomus intraradices under heavy metal stress: combination of plant clones and fungal isolates from contaminated and uncontaminated substrates. Appl Soil Ecol 40:19–29. doi:10.1016/j.apsoil.2008.02.007

    Article  Google Scholar 

  • Vasak M, Hasler DW (2000) Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4:177–183. doi:10.1016/S1367-5931(00)00082-X

    Article  PubMed  CAS  Google Scholar 

  • Waschke A, Sieh D, Tamasloukht M et al (2006) Identification of heavy metal-induced genes encoding glutathione S-transferases in the arbuscular mycorrhizal fungus Glomus intraradices. Mycorrhiza 17:1–10. doi:10.1007/s00572-006-0075-4

    Article  PubMed  CAS  Google Scholar 

  • Weiersbye IM, Straker CJ, Przybylowicz WJ (1999) Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings. Nucl Instrum Methods Phys Res. Sec B 158:335–343

    Article  CAS  Google Scholar 

  • Wheeler GL, Grant CM (2004) Regulation of redox homeostasis in the yeast Saccharomyces cerevisiae. Physiol Plant 120:12–20. doi:10.1111/j.0031-9317.2004.0193.x

    Article  PubMed  CAS  Google Scholar 

  • Wright SF, Franke-Snyder M, Morton JB et al (1996) Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193–203. doi:10.1007/BF00012053

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Consejería de Innovación, Ciencia y Empresa of the Andalusian Autonomic Government (Ref. P06-CVI-02263) for financial support of part of the work reported here. Karim Benabdellah was supported by an I3P contract from the Spanish Council for Scientific Research (CSIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Ferrol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrol, N., González-Guerrero, M., Valderas, A. et al. Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochem Rev 8, 551–559 (2009). https://doi.org/10.1007/s11101-009-9133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-009-9133-9

Keywords

Navigation