Skip to main content
Log in

A short history of plant biotechnology

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The foundations of modern plant biotechnology can be traced back to the Cell Theory of Schleiden (Arch Anat Physiol Wiss Med (J Müller) 1838:137–176, 1838) and Schwann (Mikroscopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachstum des Tiere und Pflanzen. W Engelmann: Leipzig No 176, 1839), which recognized the cell as the primary unit of all living organisms. The concept of cellular totipotency, which was inherent in the Cell Theory and forms the basis of plant biotechnology, was further elaborated by Haberlandt (Sitzungsber K Preuss Akad Wiss Wien, Math-Naturwiss 111:69–92, 1902), who predicted the production of somatic embryos from vegetative cells. This brief historical account traces the development of technologies for the culture, regeneration and transformation of plants that led to the production of transgenic crops which have become central to the many applications of plant biotechnology, and celebrates the pioneering men and women whose trend-setting contributions made it all possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altpeter F, Baisakh H, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibrock H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Nigel T, Visser R (2005) Particle bombardment and the genetic transformation of crops: myths and realities. Mol Breed 15:305–327

    Article  Google Scholar 

  • Bergmann L (1959) A new technique for isolating and cloning cells of higher plants. Nature 184:648–649

    Article  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  • Braun AC (1958) A physiological basis for autonomous growth of the crown-gall tumor cell. Proc Natl Acad Sci USA 44:344–349

    Article  PubMed  CAS  Google Scholar 

  • Braybrook SA, Stone SI, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci USA 103:3468–3473

    Article  PubMed  CAS  Google Scholar 

  • Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  PubMed  CAS  Google Scholar 

  • Chilton MD, Saiki RK, Yadav N, Gordon MP, Quetier F (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci USA 77:4060–4064

    Article  PubMed  CAS  Google Scholar 

  • Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187:927–929

    Article  Google Scholar 

  • Cocking EC (2000) Plant protoplasts. In Vitro Cell Dev Boil Plant 36:77–82

    Article  Google Scholar 

  • Constabel F, Vasil IK (eds) (1987) Cell culture and somatic cell genetics of plants, vol 4. Cell culture in phytochemistry. Academic Press, New York

  • Constabel F, Vasil IK (eds) (1988) Cell culture and somatic cell genetics of plants, vol 4. Cell culture in phytochemistry. Academic Press, New York

  • Davey MR, Cocking EC, Freeman J, Pearce N, Tudor I (1980) Transformation of petunia protoplasts by isolated Agrobacterium plasmids. Plant Sci Lett 18:307–313

    Article  CAS  Google Scholar 

  • de Block M, Herrera-Estrella L, van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J 3:1681–1689

    PubMed  Google Scholar 

  • de Framond AJ, Barton KA, Chilton MD (1983) Mini-Ti: a new vector strategy for plant genetic engineering. Biotechnology 1:262–269

    Article  Google Scholar 

  • de la Pena A, Lorz H, Schell J (1987) Transgenic rye plants obtained by injecting DNA into floral tillers. Nature 235:274–276

    Article  Google Scholar 

  • de Wet JMJ, de Wet AE, Brink DE, Hepburn AG, Woods JH (1985) Gametophyte transformation in maize (Zea mays, Gramineae). In: Mulcahy DL, Mulcahy GB, Ottaviano E (eds) Biotechnology and ecology of pollen. Springer, New York, pp 59–64

    Google Scholar 

  • Doy CH, Gresshoff PM, Rolfe BG (1973) Biological and molecular evidence for the transgenosis of genes from bacteria to plant cells. Proc Natl Acad Sci USA 70:723–726

    Article  PubMed  Google Scholar 

  • Fox JL (2006) Turning plants into protein factories. Nat Biotechnol 24:1191–1193

    Article  PubMed  CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807

    Article  PubMed  CAS  Google Scholar 

  • Gautheret RJ (1934) Culture du tissues cambial. C R Hebd Seances Acad Sci 198:2195–2196

    Google Scholar 

  • Gautheret RJ (1939) Sur la possibilité de realiser a culture indefinite des tissues de tubercules de carotte. C R Hebd Seances Acad Sci 208:118–120

    Google Scholar 

  • Gautheret RJ (1985) History of plant tissue and cell culture. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol 2. Cell growth, nutrition, cytodifferentiation, and cryopreservation. Academic Press, New York, pp 1–59

  • Giles KL (ed) (1983) Plant protoplasts. Int Rev Cytol Suppl 16. Academic Press, New York

  • Grant JE, Pandey KK, Williams EG (1980) Pollen nuclei after ionizing radiation for egg transformation. NZ J Bot 18:339–341

    Google Scholar 

  • Graves A, Goldman S (1986) The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol Biol 7:43–50

    Article  CAS  Google Scholar 

  • Guha S, Maheshwari SC (1966) Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature 212:97–98

    Article  Google Scholar 

  • Guha-Mukherjee S (1999) The discovery of haploid production by anther culture. In Vitro Cell Dev Biol Plant 35:357–360

    Google Scholar 

  • Haberlandt G (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber K Preuss Akad Wiss Wien, Math-Naturwiss 111:69–92

    Google Scholar 

  • Heller R (1953) Récherches sur la nutrition minerale des tissues végétaux cultives in vitro. Ann Sci Nat Bot Biol Veg 14:1–223

    Google Scholar 

  • Herrera-Estrella L, de Block M, Messens E, Hernalsteens JP, van Montagu M, Schell J (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2:987–95

    PubMed  CAS  Google Scholar 

  • Hess D, Dressler K, Nimmrichter R (1990) Transformation experiments by pipetting Agrobacterium into spikelets of wheat (Triticum aestivum L.). Plant Sci 72:233–244

    Article  CAS  Google Scholar 

  • Hess D, Scheinder G, Lorz H, Blaich G (1976) Investigations on the tumor induction in Nicotiana glauca by pollen transfer of DNA isolated from Nicotiana langsdorfii. Z. Pflanzenphysiol 77:247–254

    CAS  Google Scholar 

  • Hiei Y, Ohta S. Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt AC, Riker AJ, Duggar BM (1946) The influence of the composition of the medium on growth in vitro of excised tobacco and sunflower tissue cultures. Am J Bot 33:591–597

    Article  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Hoffmann N (1984) Inheritance of functional genes in plants. Science 223:496–498

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method of transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Jablonski JR, Skoog F (1954) Cell enlargement and cell division in excised tobacco pith tissue. Physiol Plant 7:16–24

    Article  CAS  Google Scholar 

  • James C (2006) Global status of commercialized biotech/GM crops: 2006. ISAAA Brief 35

  • Jones LE, Hildebrandt AC, Riker AJ (1960) Growth of somatic tobacco cells in microculture. Am J Bot 47:468–475

    Article  Google Scholar 

  • Knop W (1865) Quantitative Untersuchungen über den Ernährungsprozess der Pflanzen. Landwirtsch Vers Stn 7:93–107

    Google Scholar 

  • Kögl F, Haagen-Smit AJ, Erxleben H (1934) Über ein neues auxin (“Heteroauxin”) aus Harn. Z Physiol Chem 228:90–103

    Google Scholar 

  • Komari T, Kubo T (1999) Methods of genetic transformation: Agrobacterium tumefaciens. In: Vasil IK (ed) Advances in cellular and molecular biology of plants, vol 5. Molecular improvement of cereal crops. Kluwer, Dordrecht, pp 43–82

  • Kotte W (1922) Kulturversuche mit isolierten Wurzelspitzen. Beitr Allg Bot 2:413–43

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  Google Scholar 

  • Ledoux L, Huart R (1969) Fate of exongenous bacterial deoxyribonucleic acid in barley seedling. J Mol Biol 43:243–248

    Article  PubMed  CAS  Google Scholar 

  • Luo Z, Wu R (1988) A simple method for the transformation of rice via the pollen tube pathway. Plant Mol Biol Rep 6:165–174

    Article  CAS  Google Scholar 

  • Ma J, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M, Schillberg S, Sparrow P, Stoger E, Twyman RM (2005) Molecular farming for new drugs and vaccines: current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep 6:593–599

    Article  PubMed  CAS  Google Scholar 

  • Marton L, Wullems GJ, Molendijk L, Schilperoort RA (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277:129–131

    Article  Google Scholar 

  • Miller CO, Skoog F, Von Saltza MH, Strong FM (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77:1392

    Article  CAS  Google Scholar 

  • Molliard M (1921) Sur le développement des plantules fragmentées. C R Soc Biol (Paris) 84:770–772

    Google Scholar 

  • Muir WH, Hildebrandt AC, Riker AJ (1954) Plant tissue cultures produced from isolated single cells. Science 119:877–878

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murphy DJ (2007) Improving containment strategies in biopharming. Plant Biotechnol J 5:555–569

    Article  PubMed  CAS  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  PubMed  Google Scholar 

  • Nobécourt P (1939) Sur la pérennité et l’augmentation de volume des cultures de tissues végétaux. C R Seances Soc Biol Ses Fil 130:1270–1271

    Google Scholar 

  • Ohta Y (1986) High efficiency genetic transformation of maize by a mixture of pollen and exongenous DNA. Proc Natl Acad Sci USA 83:715–719

    Article  PubMed  CAS  Google Scholar 

  • Ozias-Akins P, Vasil IK (1985) Nutrition of plant tissue cultures. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol 2. Cell growth, nutrition, cytodifferentiation and cryopreservation. Academic Press, New York, pp 129–147

  • Pandey KK (1975) Sexual transfer of specific genes without gametic fusion. Nature 256:310–313

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski J, Shillito RD, Saul M, Mandak V, Hohn T, Hohn B, Potrykus I (1984) Direct gene transfer to plants. EMBO J 3:2717–2722

    PubMed  CAS  Google Scholar 

  • Petit A, Delhaye S, Tempé J, Morel G (1970) Recherches sur le guanidines des tissues de crown-gall. Mise en évidence d’une relation biochimique spécifique entre les souches d’ Agrobacterium tumefaciens et les tumeurs qu’elles induisent. Physiol Vég 8:205–123

    CAS  Google Scholar 

  • Power JB, Cummins SE, Cocking EC (1970) Fusion of isolated protoplasts. Nature 223:1016–1018

    Article  Google Scholar 

  • Raghavan V (1997) Molecular embryology of flowering plants. Cambridge University Press, New York

    Google Scholar 

  • Reinert J (1958) Morphogenese und ihre Kontrolle an Gewebekulturen aus Carotten. Naturwiss 45:344–345

    Article  CAS  Google Scholar 

  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ (1988) Genetically transformed maize plants from protoplasts. Science 240:204–207

    Article  PubMed  CAS  Google Scholar 

  • Robbins WJ (1922) Cultivation of excised root tips and stem tips under sterile conditions. Bot Gaz (Chicago) 73:376–390

    Article  Google Scholar 

  • Routier JB, Nickell LG (1956) Cultivation of plant tissue. US patent 2,747,334

  • Sanford JC (2000) The development of the biolistic process. In Vitro Cell Dev Biol Plant 36:303–308

    Article  Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. J Part Sci Tech 5:27–37

    Article  CAS  Google Scholar 

  • Schleiden MJ (1838) Beiträge zur Phytogenesis. Arch Anat Physiol Wiss Med (J Müller) 1838:137–176

    Google Scholar 

  • Schwann T (1839) Mikroscopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachstum des Tiere und Pflanzen. W Engelmann: Leipzig No 176

  • Shillito R (1999) Methods of genetic transformation: electroporation and polyethylene glycol treatment. In: Vasil IK (ed) Advances in cellular and molecular biology of plants, vol 5. Molecular improvement of cereal crops. Kluwer, Dordrecht, pp 9–20

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–131

    Google Scholar 

  • Skoog F, Tsui C (1951) Growth substances and the formation of buds in plant tissues. In: Skoog F (ed) Plant Growth Substances. University of Wisconsin Press, Madison, pp 263–285

    Google Scholar 

  • Staba EJ (1980) Plant tissue culture as a source of biochemicals. CRC Press, Boca Raton

    Google Scholar 

  • Steward FC, Mapes MO, Smith J (1958) Growth and organized development of cultured cells. II Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Article  Google Scholar 

  • Takebe I, Labib G, Melchers G (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwiss 58:318–320

    Article  Google Scholar 

  • Thimann KV (1935) On the plant hormone produced by Rhizopus suinus. J Biol Chem 109:279–291

    CAS  Google Scholar 

  • Thorpe TA (ed) (1995) In vitro embryogenesis in plants. Kluwer, Dordrecht

    Google Scholar 

  • Tulecke W, Nickell LG (1959) Production of large amounts of plant tissue by submerged culture. Science 130:863–864

    Article  PubMed  Google Scholar 

  • van Haute E, Joos H, Maes M, Warren G, van Montagu M, Schell J (1983) Integeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens. EMBO J 2:411–417

    PubMed  Google Scholar 

  • van Overbeek J, Conklin ME, Blakeslee AF (1941) Factors in coconut milk essential for growth and development of very young Datura embryos. Science 94:350–351

    Article  Google Scholar 

  • Vasil IK (1959) Nucleic acids and the survival of excised anthers in vitro. Science 129:1487–1488

    Article  PubMed  CAS  Google Scholar 

  • Vasil IK (1976) The progress, problems and prospects of plant protoplast research. Adv Agron 28:119–160

    Article  CAS  Google Scholar 

  • Vasil IK (ed) (1999) Advances in cellular and molecular biology of plants, vol 5. Molecular improvement of cereal crops. Kluwer, Dordrecht

  • Vasil IK (2005) The story of transgenic cereals: the challenge, the debate, and the solution—a historical perspective. In Vitro Cell Dev Biol Plant 41:577–583

    Article  Google Scholar 

  • Vasil IK, Vasil V (1972) Totipotency and embryogenesis in plant cell and tissue cultures. In Vitro 8:117–127

    PubMed  CAS  Google Scholar 

  • Vasil IK, Vasil V (1992) Advances in cereal protoplast research. Physiol Plant 85:279–283

    Article  CAS  Google Scholar 

  • Vasil V, Hildebrandt AC (1965) Differentiation of tobacco plants from single, isolated cells in microcultures. Science 150:889–892

    Article  PubMed  Google Scholar 

  • Vasil V, Hildebrandt AC (1967) Further studies on the growth and differentiation of single, isolated cells of tobacco in vitro. Planta 75:139–151

    Article  Google Scholar 

  • Virchow R (1858) Die Cellullarpathologie im ihrer Begrüngung und physiologische und pathologische Gewebelehre. A Hirschwald, Berlin

    Google Scholar 

  • Vöchting H (1878) Über Oganbildung im Pflanzenreich. Max Cohen, Bonn

    Google Scholar 

  • Went FW (1928) Wuchstoff und Wachstum. Rec Trav Bot Neerl 25:1–116

    Google Scholar 

  • White PR (1934) Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol 9:585–600

    Article  PubMed  CAS  Google Scholar 

  • White PR (1939) Potentially unlimited growth of excised plant callus in an artificial nutrient. Am J Bot 26:59–64

    Article  Google Scholar 

  • White PR (1943) A handbook of plant tissue culture. Jacques Cattell Press, Tempe, Arizona

    Google Scholar 

  • Willmitzer L, de Beuckeleer M, Lemmers M, van Montagu M, Schell J (1980) DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plant cells. Nature 287:359–361

    Article  CAS  Google Scholar 

  • Zaenen I, van Larebeke N, Teuchy H, van Montagu M, Schell J (1974) Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J Mol Biol 86:109–127

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Zhao S, Chen H, Zhao Q, Hu Z, Hou B, Xia G (2006) Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep 25:1199–1204

    Article  PubMed  CAS  Google Scholar 

  • Zilberstein A, Schuster S, Flaishman M, Pnini-Cohen S, Koncz C, Mass C, Schell J, Eyal L (1994) Stable transformation of spring wheat cultivars. In: 4th international congress of plant molecular biology, Amsterdam (Abstract 2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indra K. Vasil.

Additional information

Opening Plenary Address delivered at the international conference on “Plants for Human Health in the Post-Genome Era”, held August 26–29, 2007, in Helsinki, Finland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil, I.K. A short history of plant biotechnology. Phytochem Rev 7, 387–394 (2008). https://doi.org/10.1007/s11101-007-9075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-007-9075-z

Keywords

Navigation