Skip to main content
Log in

Cytochrome P450 oxygenases of monoterpene metabolism

  • Original Paper
  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The cytochrome P450 monoterpene oxygenases are largely responsible for imparting structural and functional diversity to this family of natural products. In most cases, cytochrome P450-mediated allylic hydroxylation of a parental monoterpene olefin leads to a series of redox transformations and conjugation reactions which yield a family of structurally related derivatives and isomers. An overview is provided of the extant monoterpene oxygenases, with examples mainly from the mint (Lamiaceae) family of essential oil plants, and, where possible, information on the structure, mechanism, localization and regulation of these enzymes is described. The review concludes with a brief assessment of biotechnological applications and a view to future research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharoni A, Giri AP, Verstappen FWA, Bertea CM, Sevenier R, Sun Z, Jongsma MA, Schwab W, Bouwmeester HJ (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16:3110–3131

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602

    Article  PubMed  CAS  Google Scholar 

  • Barkovich R, Liao JC (2001) Metabolic engineering of isoprenoids. Metab Eng 3:27–39

    Article  PubMed  CAS  Google Scholar 

  • Bellesia F, Grandi R, Pagnoni UM, Pinetti A, Trave R (1984) Biosynthesis of nepetalactone in Nepeta cataria. Phytochemistry 23:83–87

    Article  CAS  Google Scholar 

  • Bertea C, Schalk M, Mau CJD, Karp F, Wildung MR, Croteau R (2003) Molecular evaluation of a spearmint mutant altered in the expression of limonene hydroxylases that direct essential oil monoterpene biosynthesis. Phytochemistry 64:1203–1211

    Article  PubMed  CAS  Google Scholar 

  • Bertea CM, Schalk M, Karp F, Maffei M, Croteau R (2001) Demonstration that menthofuran synthase of mint (Mentha) is a cytochrome P450 monooxygenase: cloning, functional expression, and characterization of the responsible gene. Arch Biochem Biophys 390:279–286

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester HJ, Gershenzon J, Konings MCJM, Croteau R (1998) Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway. Plant Physiol 117:901–912

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester HJ, Konings MCJM, Gershenzon J, Karp F, Croteau R (1999) Cytochrome P-450 dependent (+)-limonene-6-hydroxylation in fruits of caraway (Carum  carvi). Phytochemistry 50:243–248

    Article  CAS  Google Scholar 

  • Bozak KR, Yu H, Sirevag R, Christoffersen RE (1990) Sequence analysis of ripening-related cytochrome P-450 cDNAs from avocado fruit. Proc Natl Acad Sci USA 87:3904–3908

    Article  PubMed  CAS  Google Scholar 

  • Buckingham J (2004) Dictionary of Natural Products web version 2004. Chapman and Hall, London [http://www.chemnetbase.com]

  • Burbott AJ, Loomis WD (1967) Effects of light and temperature on the monoterpenes of peppermint. Plant Physiol 42:20–28

    PubMed  CAS  Google Scholar 

  • Burke CC, Wildung MR, Croteau R (1999) Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proc Natl Acad Sci USA 96:13,062–13,067

    Article  CAS  Google Scholar 

  • Carter OA, Peters RJ, Croteau R (2003) Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry 64:425–433

    Article  PubMed  CAS  Google Scholar 

  • Clark IM, Forde BG, Hallahan DL (1997a) Spatially distinct expression of two new cytochrome P450s in leaves of Nepeta  racemosa: identification of a trichome-specific isoform. Plant Mol Biol 33:875–885

    Article  CAS  Google Scholar 

  • Clark LJ, Hamilton JGC, Chapman JV, Rhodes MJC, Hallahan DL (1997b) Analysis of monoterpenoids in glandular trichomes of the catmint Nepeta  racemosa. Plant J 11:1387–1393

    Article  CAS  Google Scholar 

  • Clark RJ, Menary RC (1980) Environmental effects on peppermint (Mentha  piperita L.). I. Effect of daylength, photon flux density, night temperature and day temperature on the yield and composition of peppermint oil. Aust J Plant Physiol 7:685–692

    Article  CAS  Google Scholar 

  • Croteau R (1987) Biosynthesis and catabolism of monoterpenoids. Chem Rev 87:929–954

    Article  CAS  Google Scholar 

  • Croteau R, Karp F, Wagschal KC, Satterwhite DM, Hyatt DC, Skotland CB (1991) Biochemical characterization of a spearmint mutant that resembles peppermint in monoterpene content. Plant Physiol 96:744–752

    PubMed  CAS  Google Scholar 

  • Davis EM, Ringer KL, McConkey ME, Croteau R (2005) Monoterpene metabolism. Cloning, expression and characterization of menthone reductases from peppermint. Plant Physiol 137:873–881

    Article  PubMed  CAS  Google Scholar 

  • Day RC, Grossniklaus U, Macknight RC (2005) Be more specific! Laser-assisted microdissection of plant cells. Trends Plant Sci 10:397–406

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14:169–176

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  PubMed  CAS  Google Scholar 

  • Duetz WA, Bouwmeester HJ, van Beilen JB, Witholt B (2003) Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl Microbiol Biotechnol 61:269–277

    PubMed  CAS  Google Scholar 

  • Estabrook RW, Cooper DY, Rosenthal O (1963) The light reversible carbon monoxide inhibition of the steroid C21-hydroxylase system of the adrenal cortex. Biochem Z 338:741–755

    PubMed  CAS  Google Scholar 

  • Fahn A (1979) Secretory tissues in plants. Academic Press Inc. Ltd., London

    Google Scholar 

  • Funk C, Croteau R (1993) Induction and characterization of a cytochrome P450-dependent camphor hydroxylase in tissue cultures of common sage (Salvia officinalis). Plant Physiol 101:1231–1237

    PubMed  CAS  Google Scholar 

  • Gershenzon J, Maffei M, Croteau R (1989) Biochemical and histochemical localization of monoterpene biosynthesis in glandular trichomes of spearmint (Mentha  spicata). Plant Physiol 89:1351–1357

    PubMed  CAS  Google Scholar 

  • Gershenzon J, McCaskill D, Rajaonarivony JIM, Mihaliak C, Karp F, Croteau R (1992) Isolation of secretory cells from plant glandular trichomes and their use in biosynthetic studies of monoterpenes and other gland products. Anal Biochem 200:130–138

    Article  PubMed  CAS  Google Scholar 

  • Gershenzon J, McConkey ME, Croteau RB (2000) Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol 122:205–213

    Article  PubMed  CAS  Google Scholar 

  • Gotoh O (1992) Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 267:83–90

    PubMed  CAS  Google Scholar 

  • Guenther E (1950) The essential oils. D. Van Nostrand Company, Inc., New York

    Google Scholar 

  • Hallahan DL, Lau S-MC, Harder PA, Smiley DWM, Dawson GW, Pickett JA, Christoffersen RE, O’Keefe DP (1994) Cytochrome P-450-catalysed monoterpenoid oxidation in catmint (Nepeta  racemosa) and avocado (Persea  americana); evidence for related enzymes with different activities. Biochim Biophys Acta 1201:94–100

    PubMed  CAS  Google Scholar 

  • Hallahan DL, West JM (1996) Cytochrome P-450 in plant/insect interactions: geraniol 10-hydroxylase and the biosynthesis of iridoid monoterpenoids. Drug Metab Drug Interact 12:369–382

    Google Scholar 

  • Haudenschild C, Schalk M, Karp F, Croteau R (2000) Functional expression of regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha spp.) in Escherichia  coli and Saccharomyces cerevisiae. Arch Biochem Biophys 379:127–136

    Article  PubMed  CAS  Google Scholar 

  • Horner CE, Melouk HA (1977) Screening, selection and evaluation of irradiation induced mutants of spearmint for resistance to Verticillium wilt. In: Induced mutations against plant diseases. International Atomic Energy Proceedings, Vienna, pp 253–262

  • Jorgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Møller BL (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol 8:280–291

    Article  PubMed  CAS  Google Scholar 

  • Kappers IF, Aharoni A, van Herpen TWJM, Luckerhoff LLP, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072

    Article  PubMed  CAS  Google Scholar 

  • Karp F, Croteau R (1992) Hydroxylation of (−)-β-pinene and (−)-α-pinene by a cytochrome P450 system from hyssop (Hyssopus  officinalis). In: Petroski RJ, McCormick SP (eds) Secondary metabolite biosynthesis and metabolism. Plenum Press, New York, pp 253–260

    Google Scholar 

  • Karp F, Harris JL, Croteau R (1987) Metabolism of monoterpenes: demonstration of the hydroxylation of (+)-sabinene to (+)-cis-sabinol by an enzyme preparation from sage (Salvia officinalis) leaves. Arch Biochem Biophys 256:179–193

    Article  PubMed  CAS  Google Scholar 

  • Karp F, Mihaliak CA, Harris JL, Croteau R (1990) Monoterpene biosynthesis: specificity of the hydroxylations of (−)-limonene by enzyme preparations from peppermint (Mentha  piperita), spearmint (Mentha  spicata) and perilla (Perilla frutescens) leaves. Arch Biochem Biophys 276:219–226

    Article  PubMed  CAS  Google Scholar 

  • Kellner DG, Maves SA, Sligar SG (1997) Engineering cytochrome P450s for bioremediation. Curr Opin Biotechnol 8:274–278

    Article  PubMed  CAS  Google Scholar 

  • Kjonaas RB, Venkatachalam KV, Croteau R (1985) Metabolism of monoterpenes: oxidation of isopiperitenol to isopiperitenone, and subsequent isomerization to piperitenone by soluble enzyme preparations from peppermint (Mentha  piperita) leaves. Arch Biochem Biophys 238:49–60

    Article  PubMed  CAS  Google Scholar 

  • Koezuka Y, Honda G, Tabata M (1986) Genetic control of the chemical composition of volatile oils in Perilla frutescens. Phytochemistry 25:859–863

    Article  CAS  Google Scholar 

  • Lange BM, Wildung MR, Stauber EJ, Sanchez C, Pouchnik D, Croteau R (2000) Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Natl Acad Sci USA 97:2934–2939

    Article  PubMed  CAS  Google Scholar 

  • Lücker J, Schwab W, Franssen MCR, van der  Plas LHW, Bouwmeester HJ, Verhoeven HA (2004) Metabolic engineering of monoterpene biosynthesis: two-step production of (+)-trans-isopiperitenol by tobacco. Plant J 39:135–145

    Article  PubMed  CAS  Google Scholar 

  • Lupien S, Karp F, Wildung M, Croteau R (1999) Regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha) species: cDNA isolation, characterization, and functional expression of (−)-4S-limonene-3-hydroxylase and (−)-4S-limonene-6-hydroxylase. Arch Biochem Biophys 368:181–192

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci USA 98:8915–8920

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud SS, Croteau RB (2003) Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase. Proc Natl Acad Sci USA 100:14,481–14,486

    Article  CAS  Google Scholar 

  • Mahmoud SS, Williams M, Croteau R (2004) Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Phytochemistry 65:547–554

    Article  PubMed  CAS  Google Scholar 

  • Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia  coli for production of terpenoids. Nature Biotechnol 21:796–802

    Google Scholar 

  • McCaskill D, Gershenzon J, Croteau R (1992) Morphology and monoterpene biosynthetic capabilities of secretory-cell clusters isolated from glandular trichomes of peppermint (Mentha  piperita). Planta 187:445–454

    Article  CAS  Google Scholar 

  • McConkey ME, Gershenzon J, Croteau RB (2000) Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint. Plant Physiol 122:215–223

    Article  PubMed  CAS  Google Scholar 

  • Narasimhulu S, Cooper DY, Rosenthal O (1965) Spectrophotometric properties of a triton-clarified steroid 21-hydroxylase system of adrenocortical microsomes. Life Sci 4:2101–2107

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe DP, Leto KJ (1989) Cytochrome P-450 from the mesocarp of avocado (Persea  americana). Plant Physiol 89:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Omura T (1982) Biogenesis of the membrane of endoplasmic reticulum. In: Sato R, Ohnishi S (eds) Structure, dynamics, and biogenesis of biomembranes. Japan Scientific Societies Press, Tokyo, pp 157–172

    Google Scholar 

  • Omura T, Sato R (1964) The carbon monoxide-binding protein of liver microsomes. J Biol Chem 239:2370–2378

    PubMed  CAS  Google Scholar 

  • Otey CR, Silberg JJ, Voigt CA, Endelman JB, Bandara G, Arnold FH (2004) Functional evolution and structural conservation in chimeric cytochromes P450: calibrating a structure-guided approach. Chem Biol 11:309–318

    Article  PubMed  CAS  Google Scholar 

  • Regnier FE, Waller GR, Eisenbraun EJ (1967) Studies on the composition of the essential oils of three Nepeta species. Phytochemistry 6:1281–1289

    Article  CAS  Google Scholar 

  • Reiling KK, Yoshikuni Y, Martin VJJ, Newman J, Bohlmann J, Keasling JD (2004) Mono and diterpene production in Escherichia  coli. Biotechnol Bioeng 87:200–212

    Article  PubMed  CAS  Google Scholar 

  • Ringer KL, Davis EM, Croteau R (2005) Monoterpene metabolism. Cloning, expression and characterization of (−)-isopiperitenol/(−)-carveol dehydrogenase of peppermint and spearmint. Plant Physiol 137:863–872

    Article  PubMed  CAS  Google Scholar 

  • Ringer KL, McConkey ME, Davis EM, Rushing GW, Croteau R (2003) Monoterpene double-bond reductases of the (−)-menthol biosynthetic pathway: isolation and characterization of cDNAs encoding (−)-isopiperitenone reductase and (+)-pulegone reductase of peppermint. Arch Biochem Biophys 418:80–92

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574

    Article  PubMed  CAS  Google Scholar 

  • Schalk M, Croteau R (2000) A single amino acid substitution (F363I) converts the regiochemistry of the spearmint (−)-limonene hydroxylase from a C6- to a C3-hydroxylase. Proc Natl Acad Sci USA 97:11,948–11,953

    Article  CAS  Google Scholar 

  • Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667

    Article  PubMed  CAS  Google Scholar 

  • Simone NL, Bonner RF, Gillespie JW, Emmert-Buck MR, Liotta LA (1998) Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet 14:272–276

    Article  PubMed  CAS  Google Scholar 

  • Testa B, Jenner P (1981) Inhibitors of cytochrome P450s and their mechanism of action. Drug Metab Rev 12:1–117

    PubMed  CAS  Google Scholar 

  • Turner GW, Croteau R (2004) Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase. Plant Physiol 136:4215–4227

    Article  PubMed  CAS  Google Scholar 

  • Turner GW, Gershenzon J, Croteau RB (2000) Development of peltate glandular trichomes of peppermint. Plant Physiol 124:665–679

    Article  PubMed  CAS  Google Scholar 

  • Turner GW, Gershenzon J, Nielson EE, Froehlich JE, Croteau R (1999) Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells. Plant Physiol 120:879–886

    Article  PubMed  CAS  Google Scholar 

  • Werck-Reichhart D, Hehn A, Didierjean L (2000) Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci 5:116–123

    Article  PubMed  CAS  Google Scholar 

  • Wüst M, Croteau R (2002) Hydroxylation of specifically deuterated limonene enantiomers by cytochrome P450 limonene-6-hydroxylase reveals the mechanism of multiple product formation. Biochemistry 41:1820–1827

    Article  PubMed  CAS  Google Scholar 

  • Wüst M, Little DB, Schalk M, Croteau R (2001) Hydroxylation of limonene enantiomers and analogs by recombinant (−)-limonene 3- and 6-hydroxylases from mint (Mentha) species: evidence for catalysis within sterically constrained active sites. Arch Biochem Biophys 387:125–136

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney Croteau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mau, C.J.D., Croteau, R. Cytochrome P450 oxygenases of monoterpene metabolism. Phytochem Rev 5, 373–383 (2006). https://doi.org/10.1007/s11101-006-9008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-006-9008-2

Keywords

Navigation