Photosynthetica 2017, 55(4):623-629 | DOI: 10.1007/s11099-017-0689-0

Physiological responses of a green algae (Ulva prolifera) exposed to simulated acid rain and decreased salinity

Y. H. Li1, D. Wang1, X. T. Xu1, X. X. Gao1, X. Sun1, N. J. Xu1,*
1 Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China

In order to evaluate the combined effects of simulated acid rain (SAR) and salinity on the physiological responses of macroalgae, Ulva prolifera was cultured under three salinity treatments (5, 10, 25 ‰) and at different pH, i.e., at pH 4.4 (C), pH 4.4(F), where the pH of the culture increased from 4.4 to approximately 7.8 during the cultivation period, or in absence of SAR at pH 8.2(C), at 100 μmol(photon) m-2 s-1 and 20°C. Compared to 25‰ salinity, Relative growth rate (RGR) of U. prolifera was enhanced by 10‰ salinity, but decreased by 5‰ salinity. No significant differences in RGR were observed between the pH 8.2(C) and pH 4.4(F) treatments, but the chlorophyll a content was reduced by SAR. Negative effects of SAR on the photosynthesis were observed, especially under low salinity treatments. Based on the results, we suggested that the U. prolifera showed a tolerance to a wide range of salinity in contrast to the low pH induced by acid rain.

Additional key words: chlorophyll fluorescence; growth; hyposalinity; photosynthetic O2 evolution

Received: January 23, 2016; Accepted: October 7, 2016; Published: December 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Li, Y.H., Wang, D., Xu, X.T., Gao, X.X., Sun, X., & Xu, N.J. (2017). Physiological responses of a green algae (Ulva prolifera) exposed to simulated acid rain and decreased salinity. Photosynthetica55(4), 623-629. doi: 10.1007/s11099-017-0689-0
Download citation

References

  1. Bisson M.A., Kirst G.O.: Osmotic adaption in the marine alga Griffithsia monilis (Rhodophyceae): the role of ions and organic compounds. - Aust. J. Plant Physiol. 6: 523-538, 1979. Go to original source...
  2. Bohnert H.J., Nelson D.E., Jensen R.G.: Adaptations to environmental stresses. - Plant Cell 7: 1099-1111, 1995. Go to original source...
  3. Bolton J.J., Robertson-Andersson D.V., Shuuluka D. et al.: Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: a SWOT analysis. - J. Appl. Phycol. 21: 575-583, 2009. Go to original source...
  4. Chang W.C., Chen M.H., Lee T.M.: 2,3,5-triphenyltetrazolium chloride reduction in the viability assay of Ulva fasciata (Chlorophyta) in response to salinity stress.-Bot. Bull. Acad. Sinica 40: 207-212, 1999.
  5. Charlson R.J., Rodhe H.: Factors controlling the acidity of natural rainwater. - Nature 295: 683-695, 1982. Go to original source...
  6. Chen B.B., Zou D.H.: Altered seawater salinity levels affected growth and photosynthesis of Ulva fasciata (Ulvales, Chlorophyta) germlings. - Acta Oceanol. Sin. 34: 108-113, 2015. Go to original source...
  7. Chen S.T., Shen X.S., Hu Z.H. et al.: Effects of simulated acid rain on soil CO2 emission in a seconday forest in subtropical China. - Geoderma 189-190: 65-71, 2012. Go to original source...
  8. Davison I.R., Pearson G.A.: Stress tolerance in intertidal seaweeds. - J. Phycol. 32: 197-211, 1996. Go to original source...
  9. Ding H.M., Yao F.F, Chen J.J. et al.: [Chemical characteristics of acidic precipitation in Tiantong, Zhejiang Province.]. - Acta Sci. Circumstantiae 32: 2245-2252, 2012. [In Chinese]
  10. Durack P.J., Wijffels S.E., Matear R.J.: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. - Science 336: 455-458, 2012. Go to original source...
  11. Fairbairn N.J.: A modified anthrone reagent. - Chem. Ind. 4: 86, 1953.
  12. Felten V., Tixier G., Guérold F.: Acid rain ecotoxicity.-In: Férard J.F., Blaise C. (ed.): Encyclopedia of Aquatic Ecotoxicology. Pp.1-14. Springer, Dordrecht 2013. Go to original source...
  13. Gao S., Chen X., Yi Q. et al.: A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation. - PLoS ONE 5: e8571, 2010. Go to original source...
  14. Gao S., Zheng Z., Gu W. et al.: Photosystem I shows a higher tolerance to sorbitol-induced osmotic stress than photosystem II in the intertidal macro-algae Ulva prolifera (Chlorophyta). - Physiol. Plantarum 152: 380-388, 2014. Go to original source...
  15. Gao S., Shen S., Wang G. et al.: PSI-driven cyclic electron flow allows intertidal macroalgae Ulva sp. (Chlorophyta) to survive in desiccated conditions. - Plant Cell Physiol. 52: 885-893, 2011. Go to original source...
  16. Gao S., Sun Q.H., Tao Y. L. et al.: A decline in macroalgae species resulting in the overwhelming prevalence of Corallina species is caused by low-pH seawater induced by short-term acid rain. - J. Exp. Mar. Biol. Ecol. 475: 144-153, 2016. Go to original source...
  17. Gensemer R.W., Playe R.C.: The bioavailability and toxicity of aluminum in aquatic environments. - Crit. Rev. Env. Sci. Tec. 29: 315-450, 1999. Go to original source...
  18. Karsten U.: Research note: salinity tolerance of Arctic kelps from Spitsbergen. - Phycol. Res. 55: 257-262, 2007. Go to original source...
  19. Lartigue J., Neill A., Hayden B. L. et al.: The impact of salinity fluctuations on net oxygen production and inorganic nitrogen uptake by Ulva lactuca (Chlorophyceae). - Aquat. Bot. 75: 339-350, 2003. Go to original source...
  20. Lawton R.J., de Nys R., Magnusson M.E., Paul N.A.: The effect of salinity on the biomass productivity, protein and lipid composition of a freshwater macroalga. - Algal Res. 12: 213-220, 2015. Go to original source...
  21. Lee Y.H., Kim D.J., Kim H.K.: Characteristics of the seawater quality variation on the south coastal area of Korea. - KSCE J. Civ. Eng. 7: 123-130, 2003. Go to original source...
  22. Li H.S.: [Principle and Technology of Plant Physiological and Biochemical Experiments.] Pp. 267-268. Higher Education Press, Beijing 2000. [In Chinese]
  23. Liu T., Chen J. A., Wang W. et al.: A combined proteomic and transcriptomic analysis on sulfur metabolism pathways of Arabidopsis thaliana under simulated acid rain. - PLoS ONE 9: e90120, 2014. Go to original source...
  24. Luo Y., Li Z.: Trend analysis of acid rain pollution for ten years in urban of Ningbo. - Environ. Sci. Technol. 34: 252-253, 2011.
  25. Manny B.A., Fahnenstiel G.L., Gardner W.S.: Acid rain stimulation of Lake Michigan phytoplankton growth. - J. Great Lakes Res. 13: 218-223, 1987. Go to original source...
  26. Mantri V.A., Singh R.P., Bijo A. J. et al.: Differential response of varying salinity and temperature on zoospore induction, regeneration and daily growth rate in Ulva fasciata (Chlorophyta, Ulvales). - J. Appl. Phycol. 23: 243-250, 2011. Go to original source...
  27. Milligan A.J., Mioni C.E., Morel F.M.M.: Response of cell surface pH to pCO2 and iron limitation in the marine diatom Thalassiosira weissflogii. - Mar. Chem. 114: 31-36, 2009. Go to original source...
  28. Provasoli, L.: Media and prospects for the cultivation of marine algae.-In: Watanabe A., Hattori A. (ed.): Cultures and Collections of Algae. Pp. 63-75. Jpn. Soc. Plant Physiol., Tokyo 1968.
  29. Ramlall C., Varghese B., Ramdhani S. et al.: Effects of simulated acid rain on germination, seedling growth and oxidative metabolism of recalcitrant-seeded Trichilia dregeana grown in its natural seed bank. - Physiol. Plantarum 153: 149-160, 2015. Go to original source...
  30. Raut R., Sharma S., Bajracharya R.M.: Biotic response to acidification of lakes-a review.-Kathman. Univ. J. Sci. Eng. Technol. 8: 1171-1184., 2012.
  31. Rautenberger R., Fernández P. A., Strittmatter M. et al.: Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta). - Ecol. Evol. 5: 874-888, 2015. Go to original source...
  32. Schmidt É.C., de L. Felix M. R., Polo L.K. et al.: Influence of cadmium and salinity in the red alga Pterocladiella capillacea: cell morphology, photosynthetic performance and antioxidant systems. - Braz. J. Bot. 38: 737-749, 2015. Go to original source...
  33. Simon C., ArGall E., Levavasseur G. et al.: Effects of short-term variations of salinity and temperature on photosynthetic response of the red alga Grateloupia doryphora from Brittany (France). - Bot. Mar. 42: 437-440, 1999. Go to original source...
  34. Steen H.: Effects of reduced salinity on reproduction and germling development in Sargassum muticum (Phaeophyceae, Fucales). - Eur. J. Phycol. 39: 293-299, 2004. Go to original source...
  35. Touchette B.W.: Seagrass-salinity interactions: Physiological mechanisms used by submersed marine angiosperms for a life at sea. - J. Exp. Mar. Biol. Ecol. 350: 194-215, 2007. Go to original source...
  36. Wang W.X., Xu P.J.: Research progress in precipitation chemistry in China. - Prog. Chem. 21: 266-281, 2009a.
  37. Wang D.Z., Jiang X., Rao W. et al.: Kinetics of soil cadmium desorption under simulated acid rain. - Ecol. Complex. 6: 432-437, 2009b. Go to original source...
  38. Wellburn A.R.: The spectral determination of chlorophylls a and b, as well as total cartenoids, using various solvents with spectrophotometers of different resolution. - J. Plant Physiol. 144: 307-313, 1994. Go to original source...
  39. Wu H., Gao K.: Ultraviolet radiation stimulated activity of extracellular carbonic anhydrase in the marine diatom Skeletonema costatum. - Funct. Plant Biol. 36: 137-143, 2009. Go to original source...
  40. Xia J.R., Li Y.J., Zou D.H.: Effects of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements. - Aquat. Bot. 80: 129-137, 2004. Go to original source...
  41. Xie X.J., Wang X.L., Lin L.D. et al.: Effects of hypo- and hypersalinity on photosynthetic performance of Sargassum fusiforme (Fucales, Heterokontophyta). - Photosynthetica 54: 210-218, 2016. Go to original source...
  42. Xu J., Gao K.: Future CO2-induced ocean acidification mediates the physiological performance of green tide alga. - Plant Physiol. 160: 1726-1769, 2012. Go to original source...
  43. Yamochi S.: Effects of desiccation and salinity on the outbreak of a green tide of Ulva pertusa in a created salt marsh along the coast of Osaka Bay, Japan. - Estuar. Coast. Shelf S. 116: 21-28, 2013. Go to original source...
  44. Zhang M.Y., Wang S.J., Wu F.C. et al.: Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. - Atmos. Res. 84: 311-322, 2007. Go to original source...
  45. Zou D.H., Gao K.S.: The photosynthetic and respiratory responses to temperature and nitrogen supply in the marine green macroalga Ulva conglobate (Chlorophyta). - Phycologia 53: 86-94, 2014. Go to original source...